KECEIVE.

JUL 22 1991

GAFE SECTION

RESPONSE OF S. FRANCIS BALDWIN

Site: West Lake LDF
D#: MoDO 19900932
Break: Ll.k
Other: Baldwin, Francis

TO

CERCLA 104(e) REQUEST FOR INFORMATION

VOLUME III OF III

JULY 18, 1991

40054993 SUPERFUND RECORDS FRA 0005

SITE CHARACTERIZATION AND REMEDIAL ACTION CONCEPTS FOR THE WEST LAKE LANDFILL

Docket No. 40-8801

Manuscript Completed: July 1989 Date Published: July 1989

Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555

PREFACE

This report has as its basis a characterization of the West Lake Landfill site and evaluation of some potential remedial measures performed primarily by S. K. Banerji, W. H. Miller, J. T. O'Connor and L. S. Uhazy of the University of Missouri-Columbia. The Nuclear Regulatory Commission received the first and second drafts, then titled "Engineering Evaluation of Options for Disposition of Radioactively Contaminated Residues Presently in the West Lake Landfill, St. Louis County, Missouri," in 1984; thus most of the information in this report dates from 1983-1984. However, some more recent data, principally water sampling results, have been added. Waste disposal and other industrial activities have continued on the 200 acre site, as have activities in the vicinity, resulting in changes in details of topography, roads, etc. To provide a more complete view of the radioactive material in the landfill, use has been made of figures from the report titled "Radiological Survey of the West Lake Landfill, St. Louis County, Missouri," NUREG/CR-2722, May 1982.

The remedial action concepts in this report are those proposed by the contractor. Judgments expressed in this report about these concepts are in general those of the contractor, and do not necessarily represent the views of the Nuclear Regulatory Commission. For example, the cost estimates for these concepts are based on radium-226 concentrations whereas the long-term issue is dependent upon the thorium-230 concentrations.

Although some of its information has not been updated since 1984, this report is being released so as to make its collected information available to interested parties.

ABSTRACT

The West Lake Landfill is near the city of St. Louis in Bridgeton, St. Louis County, Missouri. In addition to municipal refuse, industrial wastes and demolition debris, about 43,000 tons of soil contaminated with uranium and its radio-active decay products were placed there in 1973. After learning of the radioactive material in the landfill, the U.S. Nuclear Regulatory Commission (NRC) had a survey of the site's radioactivity performed and, in 1983, contracted, through Oak Ridge Associated Universities (ORAU), with the University of Missouri-Columbia (UMC) to characterize the environment of the site, conduct an engineering evaluation, and propose remedial measures. This report presents a description of the results of the UMC work, providing the environmental characteristics of the site, the extent and characteristics of the radioactive material there, some considerations with regard to potential disposal of the material, and some concepts for remedial measures.

CONTENTS

			Page
PREF	ACE	••••••••••••	iii
ABST	RACT	•	v
SUMM	ARY	***************************************	ix
1	INTRO	DDUCTION	1-1
2	SITE	DESCRIPTION	2-1
		Location. Zoning. History. Ownership. Contaminated Areas. Topography. Geology. Hydrology. Meteorology. Ecology. Demographics.	2-1 2-1 2-2 2-2 2-3 2-3 2-6 2-10 2-11
3	RADIO	DLOGICAL CHARACTERIZATION OF THE SITE	'3-1
4	3.1 3.2 3.3	Radiological Surveillance	3-1 3-2 3-7 4-1
5		DIAL ACTION ALTERNATIVE CONSIDERATIONS	5-1
J	5.1 5.2	Option A: No Remedial Action	5-1
	5.3 5.4	Land Use Option C: Extending the Landfill Off Site Option D: Removing Radioactive Soil and Relocating	5-2 5-4
	5.5	Option E: Excavation and Temporary Onsite Storage in	5-5
	5.6	a Trench Option F: Construction of a Slurry Wall to Prevent	5-6 5-8
6	REFE	Offsite Leachate Migration	6-1

CONTENTS (Continued)

FIGURES

		Page
1.1 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Location of West Lake Landfill. Land use around West Lake Landfill site. Zoning plan of West Lake area (June 1984). Site topography and extent of contamination. Bedrock stratigraphy. Location of monitoring wells. Soil profile of river alluvium. Cross-section of Missouri River alluvial valley Soil profile of upland loessal soil. Surface hydrology of West Lake area. Average monthly precipitation at Lambert Field	1-2 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24
2.11 3.1 3.2 3.3 3.4 3.5	International Airport	2-25 2-26 3-9 3-10 3-11 3-12
3.6	Auger hole elevations and location of contamination within each hole	3-14
3.8	Area 1	3-15 3-16
3.9	Rn-222 flux measurements at three locations in Area 2 (1981)	3-17
	TABLES	
3.1 3.2	RMC radionuclide analyses of water samples from the West Lake site taken by MDNR in 1981	3-18
3.3	in pCi/l)	3-20
3.4	May 7-8, 1986 Radionuclide concentrations in Latty Avenue composite	3-23
4.1	Summary of maximum soil concentrations permitted under disposal options	3-26 4-2
5.1 5.2 5.3	Itemized cost of remedial action, Option B Itemized cost of remedial action, Option C Itemized cost of remedial action, Option D	5-10 5-12 5-12

CONTENTS (Continued)

TABLES (Continued)

		Page
5.4 5.5	Itemized cost of remedial action, Option E	5-13 5-14

SUMMARY

In 1973, approximately 7900 metric tons (mt) (8700 short tons) of radioactively contaminated barium sulfate (BaSO₄) residues were mixed with about 35,000 mt (39,000 t) of soil, and the entire volume was placed in the West Lake Landfill in St. Louis County, Missouri. This material resulted from decontamination efforts at the Cotter Corporation's Latty Avenue plant where the material had been stored. Disposal in the West Lake Landfill was not authorized by the Nuclear Regulatory Commission (NRC) and was contrary to the disposal location indicated in the NRC records. State officials were not notified of this disposal since the landfill was not regulated by the State at the time. Although the contamination does not present an immediate health hazard, authorities have been concerned about whether this material poses a long-term health hazard to workers and residents of the area and what, if any, remedial action is necessary.

In 1980-81, Radiation Management Corporation (RMC) of Chicago, Illinois, performed a detailed radiological survey of the West Lake Landfill under contract to the NRC (NUREG/CR-2722). This survey was performed to determine the extent of radiological contamination. Before this survey, little was known about the location or activity of radionuclide-bearing soils in the landfill.

This survey showed that the radioactive contaminants are in two areas. The northern area (Area 2) covers about 13 acres. The radioactive debris forms a layer 2 to 15 feet thick, exposed in only a small area on the landfill surface and along the berm on the northwest face of the landfill. The southern area (Area 1) contains a relatively minor fraction of the debris covering approximately 3 acres with most of the contaminated soil buried with about 3 feet of clean soil and sanitary fill.

The RMC survey showed that the radioactivity is from the naturally occurring U-238 and U-235 series with Th-230 and Ra-226 as the radionuclides that dominate radiological impact. The survey data indicate that the average Ra-226 concentration in the radioactive wastes is about 90 pCi per gram; the average Th-230

concentration is estimated to be about 9000 pCi per gram. Since Ra-226 has been depleted with respect to its parent Th-230, Ra-226 activity will increase in time (for example, over the next 200 years, Ra-226 activity will increase ninefold over the present level). This increase in Ra-226 must be considered in evaluating the long-term hazard posed by this radioactive material.

In addition to RMC's radiological survey, soil and water samples were collected and analyzed by others, including Oak Ridge Associated Universities (ORAU), and the University of Missouri-Columbia (UMC). Occasionally a sample of water from a monitoring well exceeds slightly the EPA drinking water standard of 15 pCi gross alpha per liter. Sample analyses for priority pollutants (non-radioactive hazardous substances) show a number of listed pollutants are present.

On the basis of radiological surveillance conducted by RMC, UMC, and ORAU, the following areas of concern have been identified:

- (1) Radioactive soil is eroding from the northwestern face of the berm, and is being transported off site.
- (2) Radon gas had been observed to accumulate to an unacceptable level in the Butler-type building on site. This building has since been removed.
- (3) Some degree of radiological contamination has been found in the wells that monitor the perimeter.
- (4) Surface exposure rates over much of the contaminated areas are greater than 20 $\mu R/hr$.

In March 1983, the NRC through ORAU, contracted with UMC to conduct an engineering evaluation of the site and propose possible remedial measures for NRC's consideration for dealing with the radioactive waste at the West Lake Landfill. The following six remedial options were proposed and evaluated in this study.

- o Option A No remedial action
- Option B Stabilization onsite with restricted land use

- o Option C Extending the landfill offsite with restricted land use
- o Option D Removal and relocation of the contaminated material to an authorized disposal site
- o Option E Excavation and temporary onsite storage in a trench
- Option F Construction of a slurry wall to prevent leachate from migrating off site

It is noted that some of the above alternatives for remedial action were initially evaluated with the objective of permanent disposal of the waste at the site.

1 INTRODUCTION

The West Lake Landfill is located in St. Louis County, Missouri, 6 km (3.7 miles) west of Lambert Field International Airport (Figure 1.1) and southwest of St. Charles Rock Road in Bridgeton, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. In addition, the landfill is an active industrial complex on which concrete ingredients are measured and combined before mixing ("batching"), and asphalt aggregate is prepared. Limestone ceased to be quarried in the spring of 1987.

In 1973, 7900 metric tons [(mt) (8700 short tons)] of radioactively contaminated barium sulfate (BaSO₄) residues from uranium and radium processing were mixed with an estimated 35,000 mt (39,000 tons) of soil and deposited in the West Lake Landfill. Previously, this material was located at the Cotter Corporation's Latty Avenue facility in Hazelwood, Missouri, and was removed during decontamination work. It is not known what levels of contamination were already in the soil before the barium sulfate residues were mixed into it. Disposal in the West Lake Landfill was unauthorized and contrary to the disposal location indicated in the U.S. Nuclear Regulatory Commission's (NRC's) records.

Subsequently, the NRC sponsored studies that were directed at determining the radiological status of the landfill. In 1978, an aerial radiological survey revealed two areas within the landfill where the gamma radiation levels indicated radioactive material had been deposited. A more extensive survey was initiated in November 1980 by the Radiation Management Corporation (RMC) under contract to the NRC.

In March 1983, the NRC through Oak Ridge Associated Universities (ORAU) contracted with the University of Missouri-Columbia Department of Civil Engineering to describe the environmental characteristics of the site, conduct an engineering evaluation, and propose possible remedial measures for dealing with the radio-active waste at the West Lake Landfill. In May 1986, ORAU sampled water from

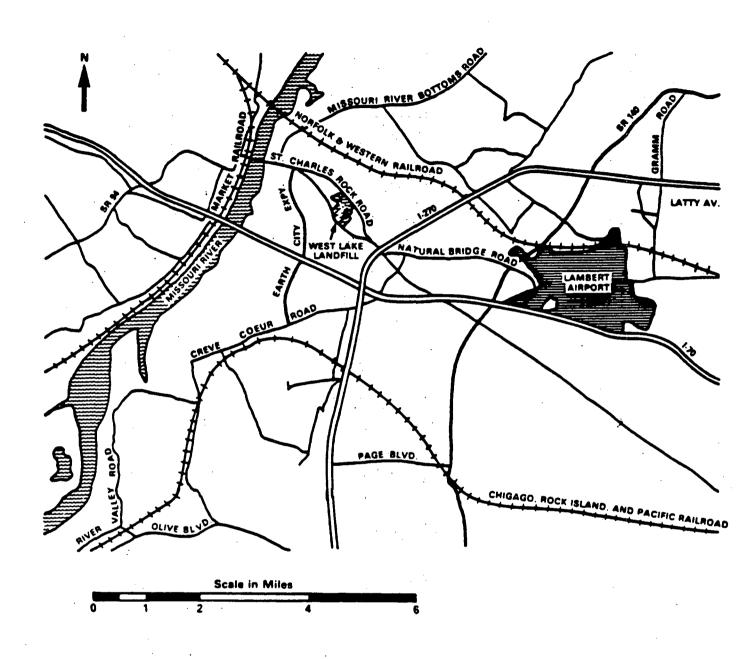


Figure 1.1 Location of West Lake Landfill

wells on and close to the landfill to determine if the radioactive material had migrated into the groundwater.

Information from all these sources forms the basis for this report.

2 SITE DESCRIPTION

This chapter presents a historical and environmental description of the West Lake Landfill site located in St. Louis County, Missouri.

2.1 Location

The 81-hectare (ha) (200-acre) West Lake Landfill property is situated between the St. Charles Rock Road and the Old St. Charles Rock Road in Bridgeton, Missouri. The southeastern and northwestern parts of the landfill abut farmland. Several commercial and industrial facilities are located near the landfill (Figure 2.1). The nearest residential area is a trailer park located approximately 1 km (0.6 mile) to the southeast. A major portion of the landfill (roughly the northern three-fourths of the site) is located on the floodplain, approximately 2 km (1.2 miles) from the Missouri River.

2.2 Zoning

The zoning plan obtained from the Bridgeton Planning and Zoning Department for properties on and adjacent to the landfill is shown in Figure 2.2. A portion of the landfill, including site Area 1, is zoned M-1, which is designated for light manufacturing; the northwest part of the landfill, including Area 2, is zoned as single-family residential (R-1). This R-1 zoning indicates the use to which the land was originally intended. However, the landfill was extended over the land zoned R-1, and the zoning plan was simply not changed to reflect the new usage. Other discrepancies between land use and zoning are found in the nearby Earth City Industrial Park (William Canney, Safety Supervisor of West Lake Landfill, Inc., personal communication, March 1984). The land across St. Charles Rock Road is zoned for light and heavy manufacturing. The remainder of the property surrounding the landfill is zoned residential and business.

2.3 History

The West Lake Landfill was started in 1962 for the disposal of municipal and industrial solid wastes, and to fill in the excavated pits from the quarry operations that had been performed at the site since 1939 (Canney, personal communication, March 1984). In 1974, the landfill was closed by the Missouri Department of Natural Resources (MDNR) (Karch, 1976). A new sanitary landfill, in an area of the West Lake Landfill property which is protected from groundwater contact, now operates under an MDNR permit.

This new part of the landfill was opened in 1974. The bottom is lined with clay and a leachate collection system has been installed. Leachate is pumped to a treatment system consisting of a lime precipitation unit followed in series by an aerated lagoon and two unaerated lagoons. The final lagoon effluent is discharged into St. Louis Metropolitan Sewer District sewers.

The quarrying operation ceased in the spring of 1987 because not enough "good rock" was left at the site.

2.4 Ownership

The West Lake Landfill was owned from 1939 until 1988 by West Lake Landfill, Inc., of 13570 St. Charles Rock Road, Bridgeton, Missouri. Most of the landfill was sold in 1988 to Laidlaw Industries, Inc. The two areas which contain the radioactive material were retained by West Lake Properties as the principal properties of a subsidiary named Rock Road Industries, Inc.

2.5 Contaminated Areas

Radioactive contamination at the West Lake Landfill has been identified in two separate soil bodies (Figure 2.3). Comparisons of radionuclide quantities and of the activity ratios between radionuclides not in secular equilibrium, indicate that the radioactive contamination in the separate soil bodies was derived from the same source, i.e., the Cotter Corporation's former Latty Avenue facility in Hazelwood, Missouri (NRC, NUREG/CR-2722).

The northern area (referred to as Area 2) of contamination shown on Figure 2.3 covers an area of 5.2 ha (13 acres) and lies above 5 to 6 m (16-20 ft) of landfill debris. The contaminated soil forms a more or less continuous layer from 1 to 4 m (3 to 13 ft) in thickness, and amounts to approximately 100,000 m³ (130,000 yd³). Some of this contaminated soil is near or at the surface, particularly along the face of the northwestern berm. Beneath the landfill debris, the soil profile consists of 1 to 2 m (3 to 7 ft) of floodplain top soil overlying 10 to 15 m (33 to 50 ft) of sand and gravel alluvium.

The southern area of contamination (referred to as Area 1) shown on Figure 2.3 covers approximately 1.1 ha (3 acres) and contains roughly 15,000 m³ (20,000 yd³) of contaminated soil. This body of soil is located east of the landfill's main office at a depth of about 1 m (3 to 5 ft), and is located over a former quarry pit, which was filled in with debris. The depth of debris beneath the contaminated soil is unknown, but is estimated to be 15 to 20 m (50 to 65 ft). Limestone bedrock underlies the landfill debris.

2.6 Topography

About 75% of the landfill site is located on the floodplain of the Missouri River. The site topography is subject to change because of the types of activities (e.g., landfilling and quarrying) performed there. Figure 2.3 shows a contour map of the site as of July 1986. The surface runoff follows several surface drains and ditches which run in a northwest direction and drain into the Missouri River.

1

2.7 Geology

2.7.1 Bedrock

Bedrock beneath the West Lake Landfill consists of Mississippian age limestone of the Meramacean Series of the St. Louis and Salem formations, which extends downward to an elevation of 58 m (190 ft) mean sea level (msl) (Figure 2.4).*

^{*}Missouri Department of Natural Resources, Division of Geology and Land Survey, Rolla, Missouri, Well Log Files.

The limestone is dense, bedded, and fairly pure except for intermittent layers which consist of abundant chert nodules. The Warsaw Formation—also of Mississippian age—lies directly beneath the limestone. The Warsaw is made up of approximately 12 m (38 ft) of slightly calcareous, dense shale; this grades into shaley limestone toward the middle of the formation (Figure 2.4) (Spreng, 1961). Bedrock beneath the site dips at an angle of 0.5° to the northeast. Eight kilometers (5 miles) east of the site, the attitude of the bedrock is reversed by the Florissant Dome; the bedrock dips radially outward from the apex of this dome at a low angle (Martin, 1966).

Since karst (solution) activity often occurs in carbonate rocks, the possibility of its occurrence in the West Lake Landfill area was considered. Brief observation of the quarry walls at the landfill suggests that some solution of the limestone has occurred, but this solution activity has apparently been limited (see Section 2.8.1) to minor widening of joints and bedding planes near the bedrock surface. Although karst activity within the limestone is relatively minor, the upper surface of the bedrock is irregular and pitted as a result of solution (Lutzen and Rockaway, 1971). This alteration of the bedrock surface is greatest beneath the Missouri River floodplain.

2.7.2 Soils

Soil material in this area may be divided into two categories: Missouri River alluvium and upland loessal soil. This demarcation is shown as the historical edge of the alluvial valley in Figure 2.5. The division is made on the basis of soil composition, depositional history, and physical properties. Because the West Lake Landfill lies over this transition zone, the surface material at the site varies considerably from southeast to northwest.

The Missouri River alluvium (Figure 2.6) ranges in thickness from 12 m (40 ft) beneath the landfill site to more than 30 m (100 ft) at mid-valley (Figure 2.7). The upper 3 m (10 ft) of the soil profile consists of organic silts and clays, that have been deposited by the Missouri River during floods.* Below this

^{*}Missouri Department of Natural Resources, Division of Geology and Land Survey, Rolla, Missouri, Well Log Files.

surface layer, the soil becomes sandy and grades to gravel at depths greater than 5 to 10 m (16 to 33 ft). Because of the effects of channel scour, which continues to grade the sediment after its initial deposition, the alluvium is fairly homogeneous in a horizontal direction and becomes progressively coarser with depth (Goodfield, 1965). At the edges of the floodplain, the alluvium is not as well graded, and a large amount of fine material is present in the deeper sand and gravel.

The upland loessal soil (Figure 2.8) is generally thinner than the floodplain soil, being usually less than 12 m (39 ft) thick, and was deposited during the age of Pleistocene glaciation. The loess consists of silt-sized particles that were transported by wind and deposited as a blanket over much of Missouri and Illinois. On the hills near the West Lake Landfill, the loess layer may be as much as 24 m (79 ft) thick. It consists of 6 to 9 m (20 to 30 ft) of fairly pure silt (Peoria loess) overlying 6 to 15 m (20 to 49 ft) of clay silt (Roxana loess) (Lutzen and Rockaway, 1971). This loess forms the hills to the southeast of the landfill, but it has long ago been removed from the landfill site and most of the surrounding valleys by erosion. The upper 1 m (3 ft) of the loess has been altered to form a thin soil profile. It should be noted that loess has a vertical permeability which is far greater than its horizontal permeability (Freeze and Cherry, 1979). The total permeability of loess is greatly increased by disturbance. The individual silt grains are generally quite angular, and therefore may not be effectively compacted by the methods commonly used to consolidate clay. The technique most effective in the compaction of loess would employ vibration beneath a surcharge. A relict soil profile from 5 to 10 m (16 to 33 ft) thick lies beneath the loess and directly on top of the bedrock. This soil was formed as a residuum before Pleistocene glaciation and was subsequently covered by the loess blanket. This soil is a highly consolidated clay containing abundant chert fragments (Lutzen and Rockaway, 1971). In addition to the natural geologic properties of the landfill, human disturbance of the soil must also be considered since material within the landfill itself can either limit or facilitate migration of leachate to the Missouri River alluvial aquifer.

In order to prevent downward movement of leachate, it is now a common practice to place a layer of compacted clay beneath sanitary landfills. Newer portions

of the landfill (constructed since 1974) have 2 to 3 m (7 to 10 ft) of clay at the base and around the sides. Waste is covered every day with 15 cm (6 in.) of compacted soil; the cover soil presently used is loess (of soil classifications CL and A4) taken from southeast of the landfill (Reitz and Jens, 1983a). If not properly compacted, this material may have a permeability of 0.0001 cm/sec (0.00004 in./sec) or more. It is not known what procedures for compaction, if any, were used at the landfill before 1974 since the site was unregulated in design as well as in materials which were accepted for disposal. It is believed, however, that there is no liner present beneath the northwestern portion of the landfill, and that sanitary (and, possibly, some hazardous) material was placed directly on the original ground surface. Since waste was periodically covered with soil to minimize rodent and odor problems, the landfill probably consists of discrete layers of waste separated by thin soil layers. Both areas containing radioactive material are in these presumably unlined above-ground portions of the landfill.

2.8 <u>Hydrology</u>

2.8.1 Subsurface Hydrology

Groundwater flow in the area surrounding the West Lake site is through two aquifers: the Missouri River alluvium and the shallow limestone bedrock. The base of the limestone aquifer is formed by the relatively impermeable Warsaw shale at an elevation of about 58 m (190 ft) msl (Figure 2.4). This shale layer has been reached, but not disturbed, by quarrying operations. Therefore, the Warsaw shale acts as an aquiclude, making contamination of the deeper limestone very unlikely. The Mississippian limestone beds have very low intergranular permeability in an undisturbed state (Miller, 1977). However, a strong leachate enters the quarry pit at an elevation of about 67 m (220 ft) msl (pt. A on Figure 2.5). This leachate is migrating vertically through more than 30 m (98 ft) of limestone. Explosive detonations associated with quarrying operations will tend to cause fractures to propagate in the quarry wall. These fractures have probably extended less than 10 m (33 ft) into the rock from the quarry face. Beyond this, the rock probably remains undisturbed. These fractures will tend to increase inflow to the quarry pit and allow leachate to percolate downward through the fractured zone. Thus, leachate inflow to the

quarry pit is not evidence of large-scale contamination of the limestone aquifer. The only other mechanism by which leachate could travel rapidly through the limestone is by transport through solution channels. Landfill consultants and quarry operators maintain that the limestone is fairly intact (Canney, personal communication, September 1983), and superficial observation of the quarry walls seems to support this conclusion. Since the limestone is fairly impervious, and groundwater flows in most areas from the bedrock into the alluvium, contamination of water in the bedrock aquifer does not appear likely.

The water table of the Missouri River floodplain is generally within 3 m (10 ft) of the ground surface, but at many points it is even shallower. At any one time, the water levels and flow directions are influenced by both the river stage and the amount of water entering the floodplain from adjacent upland areas. A high river stage tends to shift the groundwater gradient to the north, in a direction that more closely parallels the Missouri River. Local rainfall will shift the groundwater gradient to the west, toward the river and along the fall of the ground surface. This is inferred from water levels measured in monitoring wells at the West Lake site. The fact that groundwater levels commonly fluctuate more than does the Missouri River level, indicates that upland-derived recharge exerts a great deal of influence over groundwater flow at the West Lake site. This influence decreases toward the river.

The deep Missouri River alluvium acts as a single aquifer of very high permeability. This aquifer is relatively homogeneous in a downstream direction, and decreases in permeability near the valley walls. The deeper alluvium is covered by 2 to 4 m (7 to 13 ft) of organic silts and clays that may locally contain a large fraction of sand-sized particles. Water levels recorded between November 1983 and March 1984 in monitoring wells at West Lake* indicate a groundwater gradient of 0.005 flowing in a N 30°W direction beneath the northern portion of the landfill. This represents the likely direction of any possible leachate migration from the landfill (Figure 2.5).

^{*}Data supplied by Reitz and Jens engineering firm, St.Louis, 1984.

The alluvial aquifer recharges from upland areas from three sources: seepage from loess and bedrock bordering the valley, channel underflow of upland streams entering the valley, and seepage losses from streams as they cross the floodplain. Of these sources, streams and their underflow represent the main source of upland recharge to the alluvial aquifer. Streams entering the floodplain raise the water table in a fan-shaped pattern radiating outward from their point of entrance to the plain. In areas where streams are not present, the water slopes downward from the hills, steeply at first and then gently to the level of the free water surface in the Missouri River channel. The situations described above do not take into account the effect of variations in permeability of the shallow soil layer. Aerial photography of the site indicates that a filled backchannel (oxbow lake) type of soil deposit is present along the southwest boundary of the landfill (USDA, 1953). This deposit is probably composed of fine-grained material to the depth of the former channel (6 to 10 m) (20 to 33 ft). This deposit may tend to hamper communication between shallow groundwater on opposite sides of the deposit.

Since no other recharge sources exist above the level of the floodplain, the only water available to leach the landfill debris is that resulting from rainfall infiltrating the landfill surface. Because the underlying alluvial aquifer is highly permeable, there will be little "mounding" of water beneath the landfill. Because the northern portion of the landfill has a level surface it is likely that at least half of the rainfall infiltrates the surface. The remaining rainfall is lost to evapotranspiration and (to a lesser degree) surface runoff. Due to the height of the berm, temporary impoundment of surface runoff is a common occurrence.

No public water supplies are drawn from the alluvial aquifer near the West Lake Landfill. It is believed that only one private well (Figure 2.9) in the vicinity of the landfill is used as a drinking water supply. This well is 2.2 km (1.4 miles) N 35°W of the former Butler-type Building location on the West Lake Landfill. In 1981, analysis showed water in this well to be fairly hard (natural origins) but otherwise of good quality (Long, 1981).

Water in the Missouri River alluvium is hard and usually contains a high concentration of iron and manganese (Miller, 1977). The amount of dissolved

solids present in the water of the alluvial aquifer varies greatly; purity increases toward mid-valley where groundwater velocity is greatest. A water sample from a well in the alluvium 3 km (1.9 miles) north of the landfill had a total dissolved solids content of 510 mg/liter and total hardness as $CaCO_3$ of 415 mg/liter. Water in the limestone bedrock generally has a hardness greater than 180 mg/liter as $CaCO_3$ equivalent (Emmett and Jeffery, 1968). Total dissolved solids range from 311 to 970 mg/liter. Water in the limestone aquifer may contain a large amount of sulfate of natural origin (Miller, 1977).

2.8.2 Surface Hydrology

Because of the extremely low slope of the Missouri River flood plain surface, precipitation falling on the plain itself generally infiltrates the soil rather than running off the surface. The only streams present on the floodplain are those that originate in upland areas. Drainage patterns on the plain (Figure 2.9) have been radically altered by flood control measures taken to protect Earth City (Figure 2.1) and by drainage of swamps and marshes. these alterations, Creve Coeur Creek passed just south of the landfill, and drained a fairly large area. It has since been redirected to discharge into the Missouri River upstream (south) of St. Charles (Figure 2.9). The old channel still carries some water, and empties into the Missouri River 45.2 km (28 miles) upstream from the confluence with the Mississippi River. Near the landfill, this stream is usually dry. As it crosses the flood plain, the creek passes through shallow lakes which provide a more or less continuous flow to the Missouri River throughout the year. A second stream, Cowmire Creek, crosses the floodplain east of the site. This stream flows northward and joins a backwater portion of the Missouri River at kilometer 35.4 (22 miles). Because of the relationship which exists between river level and groundwater level in portions of the floodplain near the river, these streams may either lose flow (at low stage) or gain flow (at high stage).

The present channel of the Missouri River lies about 3 km (2 miles) west and northwest of the landfill. Early land surveys of this area indicate that 200 years ago the channel was located several hundred meters to the east (toward the landfill) of its present course (Reitz and Jens, 1983b). The Missouri River has a surface slope of about 0.00018 (Long, 1981). River stage at St. Charles

[kilometer 45.2 (mile 28)] is zero for a water level of 126.1 m (413.7 ft) msl (Reitz and Jens, 1983a). Average discharge of the Missouri River is 2190 m³/s (77,300 ft³/s), with a maximum flow of 2850 m³/s (101,000 ft³/s) for the period of April through July, and a minimum flow of 1140 m³/s (40,300 ft³/s) in January and December (Miller, 1977). Some average properties of Missouri River water for the period 1951-1970 were: alkalinity = 150 mg/liter as $CaCO_3$ equivalent; hardness = 209 mg/liter as $CaCO_3$ equivalent; pH = 8.1; and turbidity = 694 JTU (Jackson turbidity unit).

Water supplies are drawn from the Missouri River at kilometer 46.6 (mile 29) for the city of St. Charles, and the intake is located on the north bank of the river. Another intake at kilometer 33 (mile 20.5) is for the St. Louis Water Company's North County plant (Reitz and Jens, 1983a).

The city of St. Louis takes water from the Mississippi River, which joins the Missouri River downstream from the landfill. In this segment of the river, the two flow-streams have not completely mixed and the water derived from the Missouri River is still flowing as a stream along the west bank of the Mississippi River channel*. The intake structures for St. Louis are on the east bank of the river so that the water drawn is derived from the upper Mississippi.

2.9 Meteorology

The climate of the West Lake area is typical of the midwestern United States, in that there are four distinct seasons. Winters are generally not too severe and summers are hot with high humidity. First frosts usually occur in October; and freezing temperatures generally do not persist past March. Rainfall is greatest in the warmer months, (about one-quarter of the annual precipitation occurs in May and June) (Figure 2.10) (NRC, 1981). In July and August, thunderstorms are common, and are often accompanied by short periods of heavy rainfall. Average annual precipitation is 897 mm (35.3 in.), which includes the average annual snowfall of 437 mm (17.2 inches snow). Average relative humidity is 68%,

^{*}Ned Harvey, hydrologist with the USGS, telephone communication, August 1983.

and humidities over 80% are common during the summer. Wind during the period of December through April is generally from the northwest; winds blow mainly from the south throughout the remainder of the year. A compilation of hourly wind observations shows that although the wind resultant is fairly consistent on a monthly basis, the wind actually shifts a good deal and is very well distributed in all directions (Figure 2.11) (NRC, 1981; U.S. Department of Commerce, 1960).

Meteorological data used is from Lambert Field International Airport which is 6 km (3.7 miles) east of the West Lake site. Temperature and precipitation data are also representative of West Lake. However, because of differences in topography between Lambert Field and the site, the actual wind directions at West Lake may be slightly skewed in a NE-SW direction parallel to the Missouri River valley.

2.10 Ecology

The West Lake Landfill is biologically and ecologically diverse. Rather than a single ecological system (e.g., a prairie), it is a mosaic of small habitats associated with

- (1) moist bottomland and farmland adjacent to the perimeter berm
- (2) poor quality drier soils on the upper exterior and interior slopes of the berm
- (3) an irregular waste ground surface associated with the inactive portion of the landfill
- (4) aquatic ecosystems present in low spots on the waste ground surface

Generally, the natural systems which are present are limited by operations in the active portion of the landfill and form a corridor along the perimeter berm from near well site 75 (Figure 2.5), on the Old St. Charles Rock Road, clockwise to the main entrance to the landfill near well site 68, along St. Charles Rock

Road. The following observation and descriptions demonstrate the biological variety of these sites.

The flora of the perimeter berm extending from the southwest clockwise to the area of the main entrance to the landfill present a series of contrasts. Along the Old St. Charles Rock Road, the bottom and lower slope of the berm is heavily influenced by the nearby mature silver maple (Acer saccharinum), boxelder (Acer negundo), oak (Quercus), sycamore (Platanus), green ash (Fraximus pennsylvanica), and eastern cottonwood (Populus deltoides) trees associated with the old channel of Creve Coeur Creek. At the corner, between wells 59 and 60 (Figure 2.5), large silver maple and boxelder trees form a dense stand in the moist soils at the base of the berm. The density of these trees declines on this slope extending toward the north (well 61) and the Butler-type Building corner. The extension of this slope toward the northwest is dominated by a dense willow-like thicket in which a few eastern cottonwoods and a hawthorn tree have established. From this northwest corner of the landfill to the eastern limit of the trees between the landfill and St. Charles Rock Road (well 65), the exterior slope of the berm is dominated by dense stands of small and large eastern cottonwoods. This latter occurrence reflects the influence of the well-established eastern cottonwoods and sycamores associated with the permanent pond just north of this site (Figure 2.9). The ground cover along these exterior slopes consists of grasses, forbs, plants common to disturbed areas, seedling cottonwoods, and shrubs. A well-manicured grass groundcover continues from the limit of the trees to the area around the main entrance of the landfill and well 68. This vegetation contributes to the partial stabilization of the steep exterior slopes.

The somewhat drier top and the short, interior slope of the berm, colonized by prairie grasses such as bluestem (<u>Andropogon</u>), blends into the irregular surface of the inactive portion of the landfill. Depressions in this surface allow water to collect and tall grasses, foxtail, and plants characteristic of disturbed areas [e.g., ragweed (<u>Ambrosia</u>), mullein (<u>Verbascum</u>), pokeweed (<u>Phytolacca</u>), cinquefoil (<u>Potentilla</u>), sunflower (<u>Helianthus</u>), and plantain (<u>Plantago</u>)] are replaced by characteristic wetland species [e.g., algae (<u>Spirogyra</u>), cattails (<u>Typha</u>), sedges (<u>Carex</u>), and smartweed (<u>Polygonium</u>)]. Young eastern cottonwoods are established at several of these wet sites.

Generally, the surface vegetation of the inactive landfill gives way to barren waste ground around the Butler-type Building location and the barren terrain associated with recent landfill activities.

Animals were observed associated with these habitats. Cottontail rabbits (Sylvilagus) were encountered most frequently and their fecal pellets were observed on the landfill. Density of fecal material was particularly heavy in the thickets on the exterior slopes of the perimeter berm. In this regard, coyote (Canis latrans) feces containing rabbit fur were observed. Small mammals (rodents) were not seen but could certainly be present in these areas. Large ungulates also were not sighted, but tracks and feces of white-tailed deer indicate that they utilize the landfill.

The only birds observed were a crow (Corvus), several robins (Turdus), and white-crowned sparrows (Zonotrichia leucophrys). This certainly does not reflect the extent to which birds utilize these habitats, for observations were made early in the spring. It is readily apparent that returning migratory passerines would utilize the surface vegetation and berm thickets for nesting, cover, and feed later in the season. It is also possible that waterfowl could utilize the permanent ponds on the landfill and adjacent to St. Charles Rock Road. Twelve scaup (Aythya) and mallards (Anas) were observed on the lagoon which serves as part of the landfill waste water treatment facility.

Small puddles contained characteristic aquatic invertebrates and at least two species of amphibians. Casual examination of these shallow waters revealed three genera of snails (Physa, Lymnaea, Helisoma), an isopod (Asnellus), cyclopoid copepods, and cladocerans. Aquatic insect larvae were not observed; however, this does not rule out their presence. The sighting of a bullfrog tadpole (Rana catesbeiana) and audition of spring peepers (Hyla), indicates these ponds are utilized as breeding sites. No fish were observed in these puddles on the landfill surface; however, a dead gizzard shad (Dorsoma cepedianum) was seen in the pond adjacent to St. Charles Rock Road. The only reptiles seen were the water snake (Nerodia) and the garter snake (Thamnophis).

Although the northwest inactive portion of the landfill is posted with "No Trespassing" signs, it was evident that humans do encroach on these habitats.

Fishing tackle was found tangled in power lines and trees, and spent small-gauge shotgun shells were found on the landfill surface and berms.

2.11 Demographics

The West Lake Landfill is located in the northwestern portion of the city of Bridgeton, in St. Louis County, Missouri. Earth City Industrial Park is located on the floodplain 1.5 to 2 km (0.9 to 1.2 miles) northwest of the landfill. Population density on the floodplain is generally less than 10 persons per square kilometer (26 persons per square mile); and the daytime population (including factory workers) is much greater than the number of full-time residents.

Major highways in the area include Interstate 70 (I-70) and Interstate 270 (I-270), which meet south of the landfill at Natural Bridge Junction (Figure 1.1). The Earth City Expressway and St. Charles Rock Road lie, respectively, west and east of the landfill. The Norfolk and Western Railroad passes about 1 km (0.6 mile) from the northern portion of the landfill (Figure 1.1). Lambert Field International Airport is located 6 km (3.7 miles) east of the West Lake Landfill.

In addition to factories at Earth City, plants are operated by Ralston-Purina and Hussman Refrigeration across St. Charles Rock Road. The employees of these two plants probably comprise the largest group of individuals in close proximity to the contaminated areas for significant periods of time. The Ralston-Purina facilities are located 0.4 km (0.2 mile) northeast of the Butler-type Building location at the landfill. Considering that land in this area is relatively inexpensive and that much of it is zoned for manufacturing, industrial development on the floodplain will likely increase in the future.

Two small residential communities are present near the West Lake Landfill. Spanish Lake Village consists of about 90 homes and is located 1.5 km (0.9 mile) south of the landfill, and a small trailer court lies across St. Charles Rock Road, 1.5 km (0.9 mile) southeast of the site (Figure 2.1). Subdivisions are presently being developed 2 to 3 km (1.2 to 1.9 miles) east and southeast of the landfill in the hills above the floodplain. Ten or more houses lie east of the

landfill scattered along Taussig Road. The city of St. Charles is located north of the Missouri River at a distance greater than 3 km (1.9 miles) from the landfill.

Areas south of the West Lake Landfill are zoned residential; areas on the other sides are zoned for manufacturing and business (Figure 2.2). Most of the landfill is zoned for light manufacturing (M-1). However, approximately 0.3 km² (0.12 mi²) of the northern portion of the landfill is zoned for residential use; this includes the contaminated area around the Butler-type Building site. The field northwest of the landfill between Old St. Charles Rock Road and St. Charles Rock Road is under cultivation. Trends indicate that the population of this area will increase, but the land will probably be used primarily for industrial facilities.

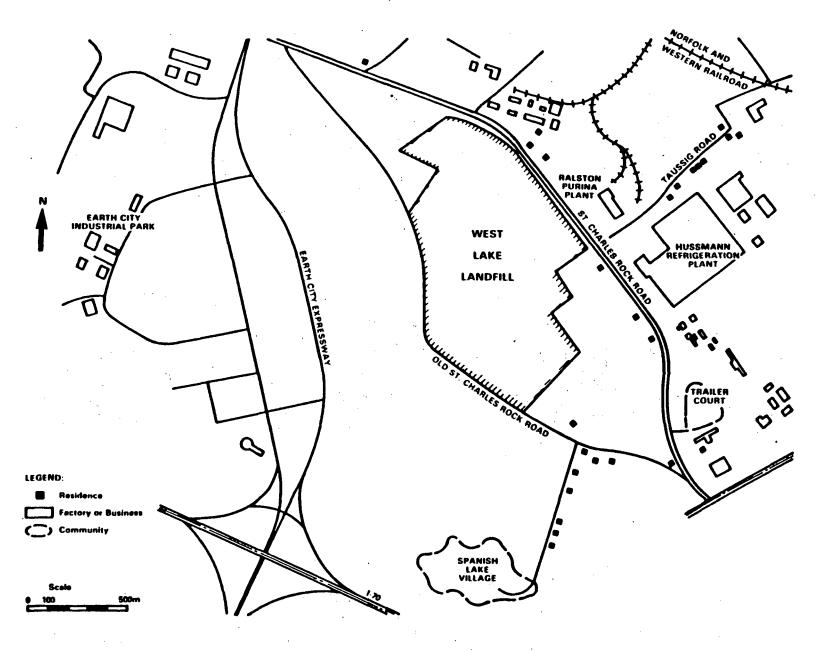


Figure 2.1 Land use around West Lake Landfill site

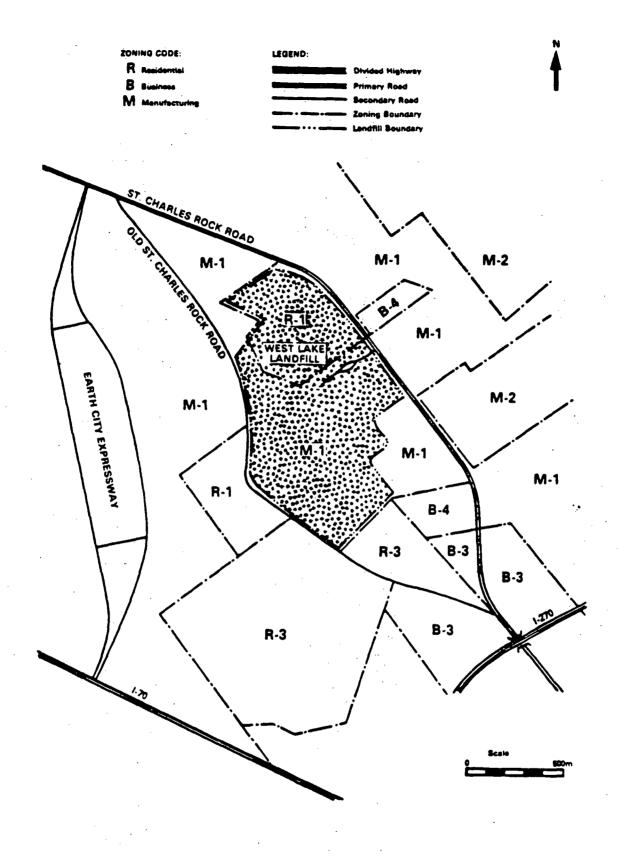


Figure 2.2 Zoning plan of West Lake area (June 1984)

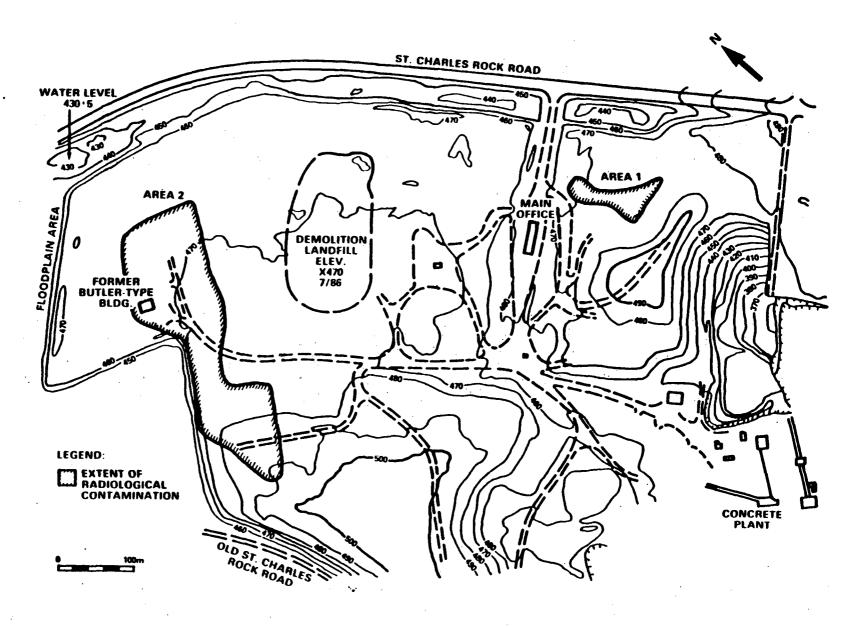


Figure 2.3 Site topography and extent of contamination.

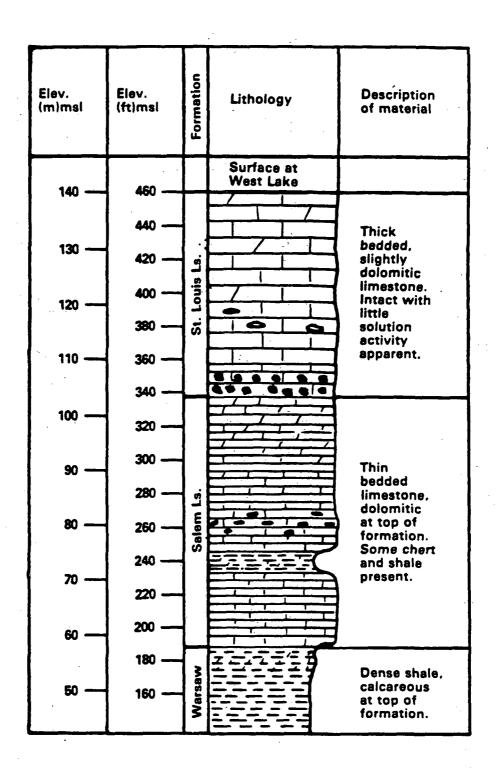


Figure 2.4 Bedrock stratigraphy

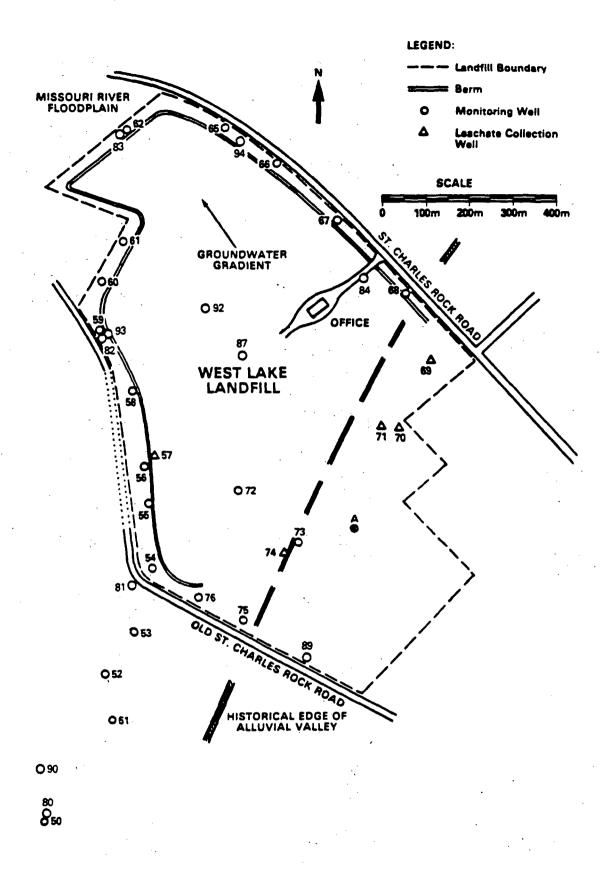


Figure 2.5 Location of monitoring wells

Overall permeability increases	Soil composition	Thickness meters (feet)	Description
		2 - 3 (6.6 - 10)	Silt: clayey at surface, sandy at depth
			Silty sand
		6 - 27 (20 - 89)	Sand with some gravel
		·	Sandy gravel
			Limestone bedrock

Figure 2.6 Soil profile of river alluvium

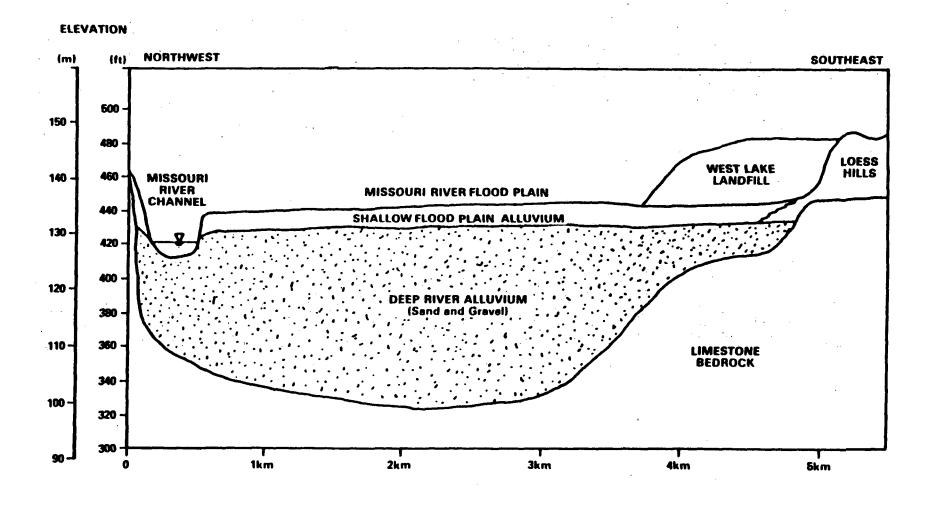


Figure 2.7 Cross-section of Missouri River alluvial valley

Vertical permeability increases	Horizontal permeability increases	Soil composition	Thickness meters (feet)	Description
			2 - 3 (6.6 - 10)	Organic silts and clays (topsoil)
		(-/-	6 - 9 (20 - 30)	Peoria loess, silt
			6 - 15 (20 - 50)	Roxana loess, silty-clay
			5 - 10 (17 - 33)	Well-consolidated clay residium
				Limestone bedrock

Figure 2.8 Soil profile of upland loessal soil

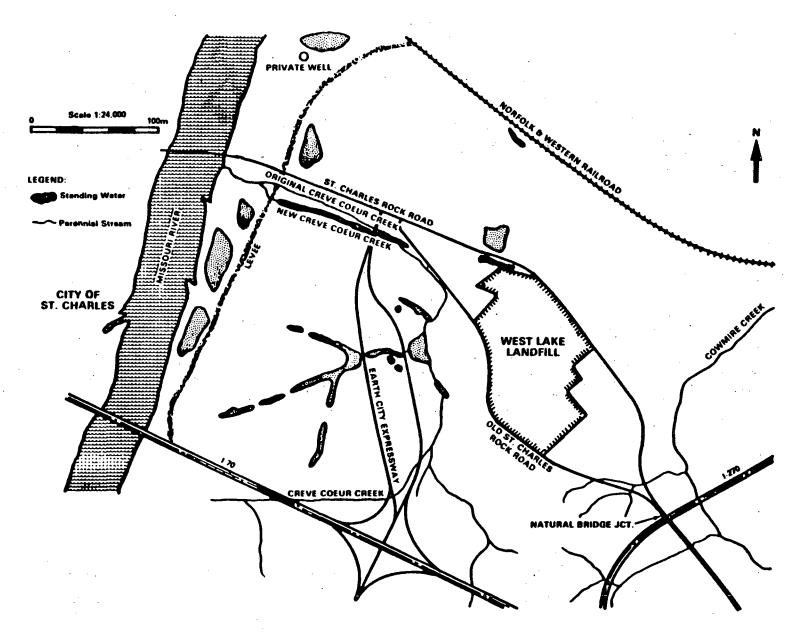


Figure 2.9 Surface hydrology of West Lake area

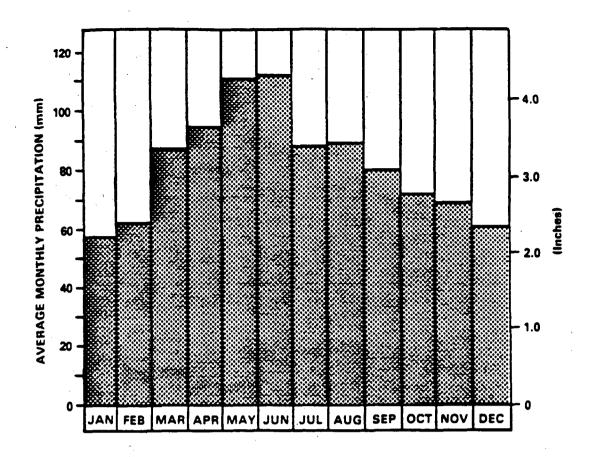
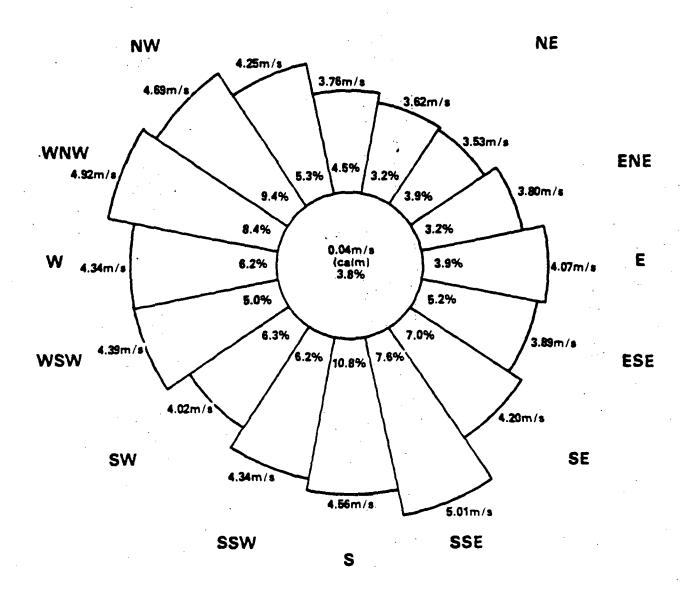



Figure 2.10 Average monthly precipitation at Lambert Field International Airport

Wind rose is for Lambert Field International Airport, Hazelwood, Missouri, and shows the percentage of hourly observations in each direction along with the average speed in that direction; for example: wind blew from the north 4.5% of the time at an average speed of 3.76 m/s.

Figure 2.11. Wind distribution for West Lake area

3 RADIOLOGICAL CHARACTERIZATION OF THE SITE

3.1 Radiological Surveillance

Approximately 43,000 mt (47,000 tons) of contaminated soil were reported to have been disposed of in the landfill. A fly-over radiological survey performed for the NRC in 1978 identified two areas of contamination at the West Lake Landfill.

Subsequently, from August 1980 through the summer of 1981, the Radiation Management Corporation (RMC), under contract to the NRC, performed an onsite evaluation of the West Lake Landfill (NRC, NUREG/CR-2722). The purpose of this survey was to clearly define the radiological conditions at the landfill. The results were to be utilized in performing an engineering evaluation to determine if remedial actions should and could be taken.

The area to be surveyed was divided into 10-m (33-ft) grid blocks and included the following measurements:

- (1) external gamma exposure rates 1 m (3.3 ft) above the surfaces and betagamma count rates 1 cm (0.4 in.) above surfaces
- (2) radionuclide concentrations in surface soils
- (3) radionuclide concentrations in subsurface deposits
- (4) gross activity and radionuclide concentrations in surface and subsurface water samples
- (5) radon flux emanating from surfaces
- (6) airborne radioactivity
- (7) gross activity in vegetation

3.2 Survey Results

External Gamma

Figure 3.1 shows the two areas of elevated external radiation levels as they existed in November 1980, at the time of the preliminary RMC site survey. As can be seen, both areas contained locations where levels exceeded 100 μ R/hr at 1 m (3.3 ft). In Area 2, gamma levels as high as 3000 to 4000 μ R/hr were detected. The total areas exceeding 20 μ R/hr were about 1.2 ha (3 acres) in Area 1 and 3.6 ha (9 acres) in Area 2.

External gamma levels measured in May and July of 1981 decreased significantly, especially in Area 1, because approximately 1.2 m (4 ft) of sanitary fill was added to the entire area and an equal amount of construction fill was added to most of Area 2. As a result, only a few hundred square meters (a few thousand square feet) in Area 1 exceed 20 μ R/hr. In Area 2, the total area exceeding 20 μ R/hr decreased by about 10%, and the highest levels were about 1600 μ R/hr, near the location of the Butler-type building.

Surface Soil Analyses

A total of 61 surface soil samples were gathered and analyzed on site for gamma activity. Samples were normally stored 10 to 14 days to allow ingrowth of radium daughters. Concentrations of U-238, Ra-226 (from Pb-214 and Bi-214), Ra-223, Pb-211, and Pb-212 were determined for each sample. Surface soil samples are located in Figures 3.2 and 3.3.

In all soil samples, only uranium and/or thorium decay chain nuclides and K-40 were detected. Offsite background samples were on the order of 2 pCi/g Ra-226. Onsite samples ranged from about 1 to 21,000 pCi/g Ra-226, and from less than 10 to 2100 pCi/g U-238. In those cases where elevated levels of Ra-226 were detected, the concentrations of U-238 were generally anywhere from a factor of 2 to 10 lower. In cases of elevated sample activity, daughter products of both U-238 and U-235 were found.

In general, surface activity was limited to Area 2, as indicated by surface beta-gamma measurements. Only two small regions in Area 1 showed contamination; both were near the access road across from the site offices.

In addition to onsite gamma analyses, 12 samples were submitted to RMC's radio-chemical laboratories for thorium and uranium radiochemical determinations. The results show all samples contain high levels of Th-230. The ratio of Th-230 to Ra-226 (Bi-214) is about 20 to 1.

Subsurface Soil Analysis

Subsurface contamination was assessed by extensively "logging" holes drilled through the landfill. Several holes were drilled in areas known to contain contamination, then additional holes were drilled at intervals in all directions until no further contamination was encountered. A total of 43 holes were drilled, 11 in Area 1 and, in Area 2, 32 including 2 nearby offsite wells for monitoring water. All holes were drilled with a 6-in. auger and lined with 4-in. PVC (polyvinyl chloride) casing. The location of these auger holes is shown in Figures 3.4 and 3.5.

Each hole was scanned with an NaI(T1) detector and rate meter system for an initial indication of the location of subsurface contamination. On the basis of the initial scans, 19 holes were selected for detailed gamma logging using the intrinsic germanium (IG) detector and multiple channel analyzer.

The results of the NaI(T1) counts and IG analyses show concentrations of Bi-214, as determined by the IG system, ranged from less than 1 to 19,000 pCi/g. For those holes where both NaI(T1) counts and IG counts were made, a good correlation between gross NaI(T1) counts and Ra-226 concentrations, as determined by in situ analysis of the daughter Bi-214 by the IG system, was found.

It was determined that the subsurface deposits extended beyond areas where surface radiation measurements exceeded 5 pCi/g. The approximate area of subsurface contamination compared to the area of elevated surface radiation levels shows a total difference in areas of 2 ha (5 acres).

The variations of contamination with depth for Areas 1 and 2 are shown in Figure 3.6. As can be seen, the surface elevations vary by about 6 m (20 ft), and the highest elevations occur at locations of fresh fill. Contamination (>5 pCi/g Ra-226) in several areas is found to extend from the surface to appreciable depths, about 6 m (20 ft) below the surface in two cases. In general, the subsurface contamination appears to be a continuous single layer, ranging from 0.6 to 4.6 m (2 to 15 ft) thick, located between elevations of 139 to 144 m (455 to 480 ft) and covering 6.5 ha (16 acres) total area.

In Figures 3.7 and 3.8, representations of the subsurface deposits are provided on the basis of auger hole measurements. These representations are consistent with the operating history of the site, which suggests that the contaminated material was moved onto the site and spread as cover over fill material. Thus, ** one would expect a fairly continuous, thin layer of contamination, as indicated by survey results.

Nonradiological Analysis

Six composite samples were submitted to RMC's Environmental Chemistry Laboratory for priority pollutant analysis. Five samples were taken from auger holes (one from Area 1 and four from Area 2) and the sixth from the West Lake leachate treatment plant sludge. The results indicate a significant presence of organic solvents in Area 2 samples. The results of the leachate sludge analysis were not as high as any of the soil samples.

A chemical analysis of radioactive material from both areas was also performed by RMC's laboratory. Results show elevated levels of barium and lead in most cases.

Background Radioactivity Measurement

Various offsite locations were selected for reference background measurements. The results of these measurements were within the normal range.

Airborne Radioactivity Analyses

Both gaseous and particulate airborne radioactivity were sampled and analyzed during this study. Since it was known that the buried material consisted partially or totally of uranium ore residues, the sampling program concentrated on measuring radon and its daughters in the air. Two methods were used: the first was a scintillation flask method for radon gas and the second was analysis of filter paper activity for particulate daughters.

A series of grab samples using the accumulator method were taken between May and August of 1981. A total of 111 samples from 32 locations was collected. Measurable radon flux levels ranged from $0.2~\rm pCi/m^2s$ in low background areas to $865~\rm pCi/m^2s$ in areas of surface contamination.

At three locations, repetitive measurements were made over a period of 2 months. These results are plotted in Figure 3.9. As can be seen, significant fluctuations were observed at two locations. The fact that these fluctuations were real and not measurement artifacts was later confirmed by duplicate charcoal canister samples, as described below.

A total of 35 charcoal canister samples was gathered at 19 locations over a 3-month period. The results show levels ranging from 0.3 pCi/ m^2 s to 613 pCi/ m^2 s. On 24 different occasions, the charcoal canisters and accumulator were placed in essentially the same locations, at the same time, for duplicate sampling. The results of this side-by-side study show generally good correlation between the two methods.

A set of 10-minute high-volume particulate air samples was taken to determine both short-lived radon daughter concentrations and long-lived gross alpha activity. The highest levels were detected in November 1980, near and inside the Butler-type building which has since been removed. These two samples approximately equal NRC's 10 CFR Part 20, Appendix B, alternate concentration limit of one-thirtieth WL for unrestricted areas.

In addition to the routine 10-minute samples, five 20-minute high-volume air samples were taken and counted immediately on the IG gamma spectroscopy system

to detect the presence of Rn-219 daughters. All samples were taken near surface contamination. In addition to Rn-222 daughter gamma activities, Rn-219 daughters were detected by measuring the low-abundance gamma rays of Pb-211. Concentrations of Rn-219 daughters ranged from 6×10^{-11} to 9×10^{-10} µCi/cc.

Vegetation Analysis

Vegetation samples included weed samples from onsite locations and farm crop samples (winter wheat) near the northwest boundary of the landfill. This location was chosen because runoff from the fill onto the farm field was possible. No elevated activities were found in these samples.

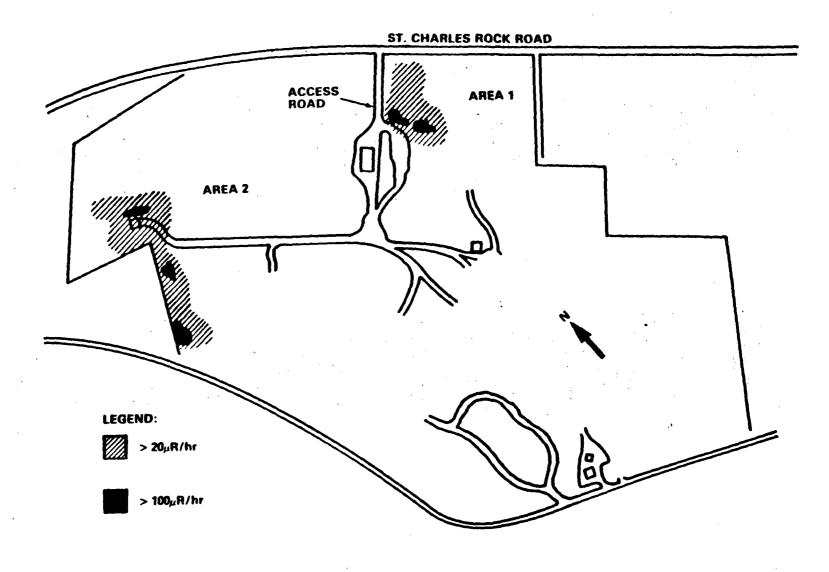
Water Analyses

A total of 37 water samples was taken: 4 in the fall of 1980, and the remainder in the spring and summer of 1981. One sample was equal to the U.S. Environmental Protection Agency (EPA) gross alpha activity standard for drinking water of 15 pCi/liter and that was a sample of standing water near the Butler-type building. Several samples, including all the leachate treatment plant samples, exceeded the EPA drinking water screening level for gross beta which would require isotopic analyses. Subsequent isotopic analyses indicated that the beta activity could be attributed to K-40. None of the offsite samples exceeded either EPA standard or screening level.

In 1981, MDNR collected 41 water samples which RMC analyzed for radioactivity (Table 3.1). Of these samples, 5 were background, 10 were onsite surface water, 10 were shallow groundwater standing in boreholes, and 16 were landfill leachate. From these data, background activity is estimated as 1.2 pCi/liter gross alpha and 27 pCi/liter gross beta. Results in Table 3.1 show the gross alpha in two water samples exceeded or equaled 15 pCi/l; the gross beta in ten water samples exceeded 50 pCi/l. Most of the gross beta activity comes from naturally occurring K-40 as determined from subsequent isotopic analysis.

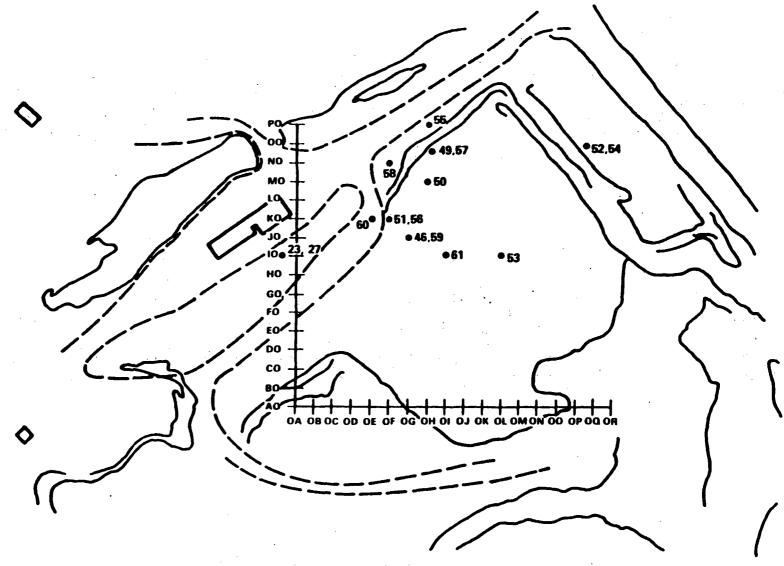
In addition, groundwater samples in perimeter monitoring wells at the West Lake Landfill were taken by UMC personnel and ORAU in 1983, 1984, and 1986. The well locations are shown in Figure 2.5 and the results are presented in

Tables 3.2 and 3.3. Results in Table 3.2 show the gross alpha in two water samples slightly exceeded 15 pCi/l; the gross beta were all below 50 pCi/l in all water samples. Table 3.3 shows analyses were below 15 pCi/l for gross alpha and 50 pCi/l for gross beta for all the wells.


3.3 Estimation of Radioactivity Inventory

In examining the RMC report for bore hole samples (Table 3.3), it is noted that the naturally occurring U-238 to Th-230 to Ra-226 equilibrium has been disturbed. The RMC report (NRC, NUREG/CR-2722) indicates that the ratio of Ra-226 to U-238 is on the order of 2:1 to 10:1. This observation is consistent with the history of the radionuclide deposits in the West Lake Landfill, i.e., that they came from the processing of uranium ores to extract the uranium content and that the radioactive material at West Lake came from the former Cotter Corporation facility on Latty Avenue (presently occupied by Futura Coatings Company) in Hazelwood, Missouri. This location contains contamination from ore processing residues from which uranium had been previously separated, leaving the daughters behind at relatively higher concentrations. Additionally, it is noted in the RMC report that the ratio of Th-230 to Ra-226 is on the order of 5:1 to 50:1. This indicates that radium has also been removed. Other data are available in the Latty Avenue site study (Cole, 1981). Table 3.4 presents the radionuclide concentrations in Latty Avenue composite samples.

Using the RMC data and averaging the auger hole measurements over the two volumes of radioactive material found in Areas 1 and 2, a mean concentration of 90 pCi/g was calculated for Ra-226. Also, the ratios of Th-230 to Ra-226 were established since the level of Th-230 will determine the increase of Ra-226 with time. Although the ratio of Th-230 to Ra-226 ranged from 5:1 to 150:1, most of the data were in the 30:1 to 50:1 range. To ensure conservatism in estimating the long-term effects of Ra-226, a ratio of 100:1 was used for all further calculations.


Using the Th-230:Ra-226 ratio of 100:1, the Th-230 activity is 9000 pCi per gram. If the U-238 concentration (as well as U-234 which would be similarly separated from the ore) is a factor of 5 less than Ra-226, this implies about 18 pCi U-238 per gram. The total mass of radioactive material (having Ra-226)

concentrations of 5 pCi/g or more) in the landfill was estimated by visually integrating the volume of radioactive material from graphs and multiplying by an average soil density, resulting in 1.5×10^{11} grams (150,000 metric tons) of contaminated soil. These numbers indicate that there are about 14 Ci of Ra-226 contained with its decay products in the radioactive material in the landfill. The material also contains about 3 Ci each of U-238 and U-234, and about 1400 Ci of Th-230. These estimates indicate the order of magnitude of the quantities to be dealt with, although the estimate for Th-230 is regarded as conservatively large.

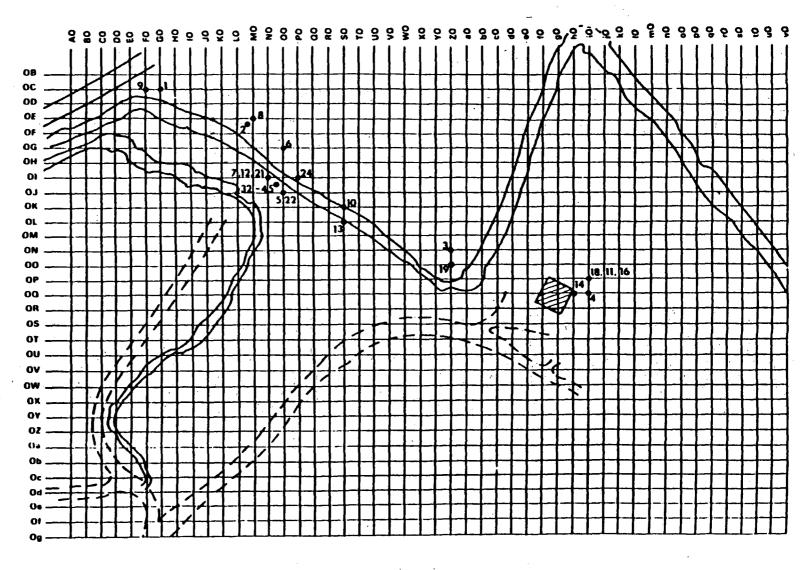

Source: NUREG/CR-2722, Figure 3, p. 27.

Figure 3.1 External gamma radiation levels (November 1980)

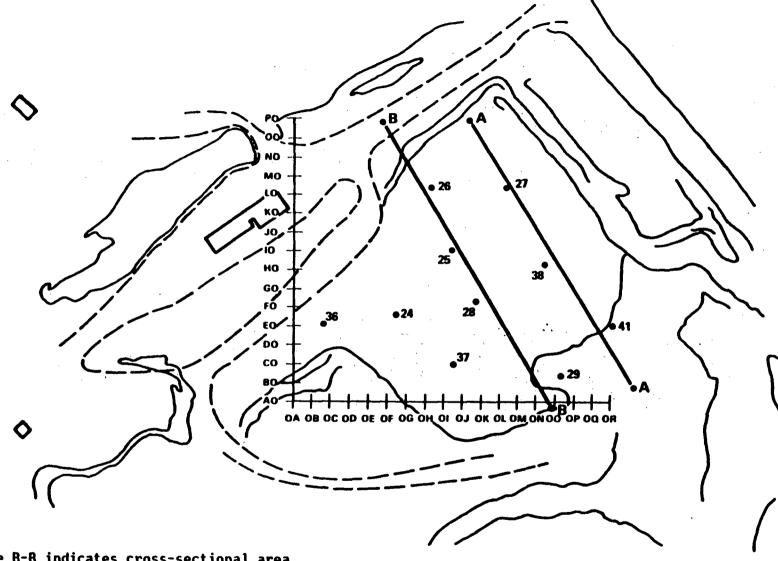
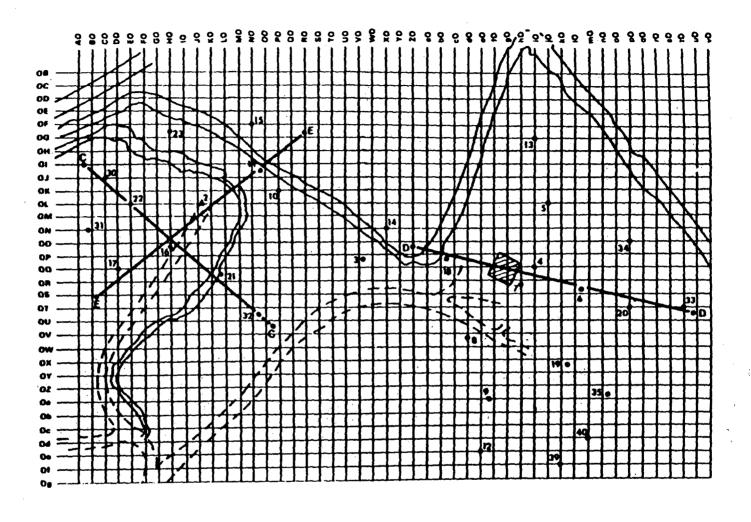

Source: NUREG/CR-2722, Figure 7, p. 31.

Figure 3.2 Location of surface soil samples, Area 1

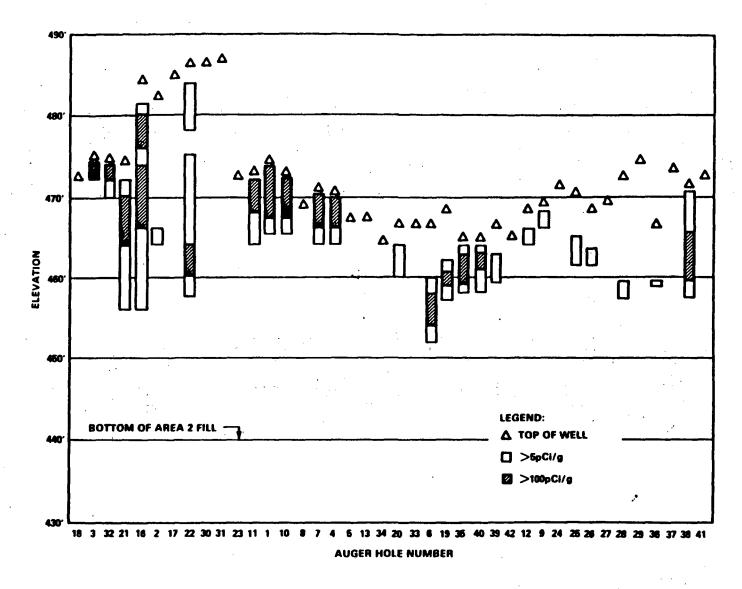
Source: NUREG/CR-2722, Figure 8, p. 32.


Figure 3.3 Location of surface soil samples, Area 2

Line B-B indicates cross-sectional area shown in Figure 3.7.

Source: NUREG/CR-2722, Figure 9, p. 33.

Figure 3.4 Location of auger holes, Area 1



Note: Line E-E indicates cross-sectional area shown in

Figure 3.8.

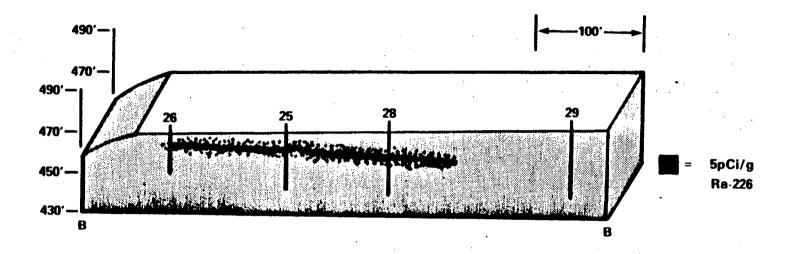
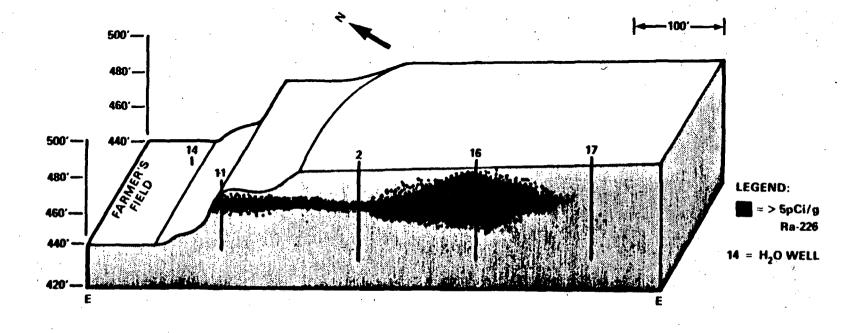

Source: NUREG/CR-2722, Figure 10, p. 34.

Figure 3.5 Location of auger holes, Area 2

Source: NUREG/CR-2722, Figure 14, p. 38.

Figure 3.6 Auger hole elevations and location of contamination within each hole

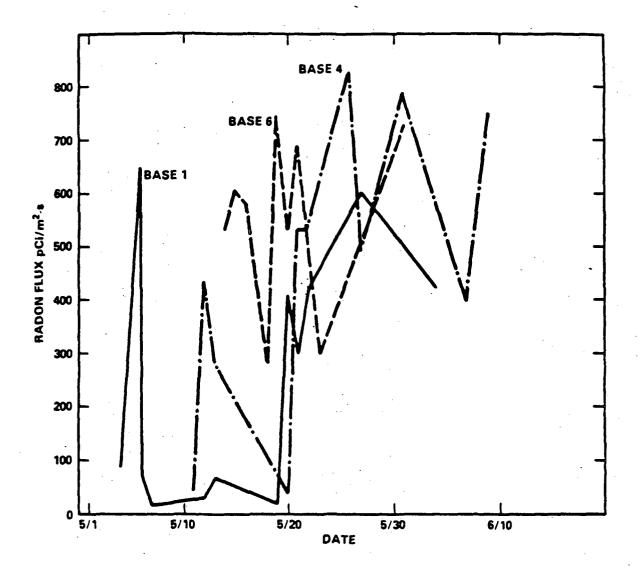


Notes: (1) B-B is defined in Figure 3.4.

(2) The blackened areas indicate the estimated extent of contamination exceeding 5 pCi/g Ra-226, based on surface and auger hole measurements.

Source: NUREG/CR-2722, Figure 16, p. 39.

Figure 3.7 Cross-section B-B showing subsurface deposits in Area 1



Notes: (1) E-E is defined in Figure 3.5.

(2) The blackened areas indicate the estimated extent of contamination exceeding 5 pCi/g Ra-226, based on surface and auger hole measurements.

Source: NUREG/CR-2722, Figure 19, p. 42.

Figure 3.8 Cross-section E-E showing subsurface deposits in Area 2

Source: NUREG/CR-2722, Figure 20, p. 43.

Figure 3.9 Rn-222 flux measurements at three locations in Area 2 (1981)

Table 3.1 RMC radionuclide analyses of water samples from the West Lake site taken by MDNR in 1981

Sample #	Type of sample*	Gross alpha (pCi/l)	Gross beta (pCi/l)
7001	\$ \$ \$ \$ \$ \$ \$ \$ \$	3.11	22.5
7002	S	8.00	23.4
7003	Ş	1.56	9.88
7019	S	1.91	30.0
7025	S	1.56	36.5
7028	S	45.2	87.8
7029	5	<0.64	<1.34
7030	5	0.52	35.1
7031	5	1.43	26.3
			· · · · · · · · · · · · · · · · · · ·
7004	В	1.04	19.7
7021	В	1.56	29.1
7027 7032	B .	1.04	32.5 26.3
7032	B B	<0.05 1.04	29.0
7033		1.04	
7009	G	4.50	22.3
7010	G	2.60	15.2
7011	G	3.12	10.6
7012	G	7.10	16.6
7017	G	0.52	33.6
7018 7020	G G	6.76	36.1
7026	G	8.84 <2.0	30.1 38.9
	G	15.0	41.0
2 3	G	2.9	7.6
J		5. 3	

See footnote at end of table.

Table 3.1 (Continued)

Sample #	Type of sample*	Gross alpha (pCi/l)	Gross beta (pCi/l)
7013	L '	<3.0	1.30
7014	L	<3.0	130
7015	L	<3.0	103
7016	L	<3.0	98.9
7022	L	3.45	107
7023	Ĺ.	<3.0	122
7024	L	<3.0	86.7
7034	Ĺ	<3.0	10.3
7035	L	<3.0	84.5
7036	L	<3.0	69.6
1	L	7.3	80
4	L	<3.0	26

Sample #	Type of sample*	Ra-226 (pCi/l)	K-40 (pCi/1)
7014	L	<1.6	138
7015	L	3.9	136
7016	L	<1.6	98.9
7022	L	2.4	104
7028	S	1.6	124

^{*}S = surface sample
B = offsite, background
G = groundwater from boreholes
L = leachate

Table 3.2 Radiological quality of water in perimeter monitoring wells of West Lake Landfill (concentrations reported in pCi/l)

Well #	Ra-226	Gross alpha*	Gross beta*	Gross alpha**	Gross beta**
18	• ,	•	- .	12.5	12.5
59	<3	3.2	9.9	-	•
60	-	•	-	20.5	20.8
61	•	-	•	2.7	13.9
62	<3	2.8	7.4	3.5	8.5
63	•	•	• : 2 4	2.2	7.0
65	<3	12.4	33.1	5.7	6.3
66	<3	4.3	6.9	•	-
67	<3	5	5.3	-	-
68	<3	18.2	18.8	•	•
50***	<3	5	7.7	1.3	8.1

^{*}Samples taken November 15, 1983.

**Samples taken March 21, 1984, by UMC personnel, analyzed by Environmental Health Lab of St. Louis County Health Department, Clayton, Missouri.

Table 3.3 Radionuclide concentrations in well water samples: May 7-8, 1986

			Concentrat	Concentrations (pCi/l)			
Radionuclide	Well 50 ^a	Well 51	Well 52	Well 53	Well 54	We11 55	We11 56
Gross alpha	2.2	2.2	1.9	11	4.4	4.8	5.7
Gross beta	7.5	4.4	7.5	16	14	14	12
Ra-226	b	, 		0.4			0.2
Ra-228				1.7	••	 '	0.3
U-total				22			8.9
Th-228			<u></u>	0.5	~ =		0.3
Th-230				0.9		·	0.9
Th-232		••		0.3			0.8
Depth to water (m)	5.0	3.8	3.2	3.3	15.5	11.5	11.5

Table 3.3 (Continued)

Radionuclide	Well 58	Well 59	Well 60	Well 61	Well 62	Well 65	Well 66
Gross alpha	5.8	11	14	3.3	5.6	3.5	1.8
Gross beta	15 .	46	19	14	10	7.4	9.9
Ra-226	0.3	0.3	2.5		0.8	••	
Ra-228	2.9	0.5	1.6		0.6		
U-total	13	25	19	**	2.3		
Th-228	0.6	0.5	0.5	••	0.8	 .	
Th-230	1.5	0.2	4.4		1.2		¹ on of
Th-232	0.7	0.1	0.1		0.6	••	
Depth to water (m)	14.0	Not determined	3,5	4.5	4.2	1.9	1.9

Table 3.3 (Continued)

			Concentra	tions (pCi/l)				
Radionuclide	Well 67	Well 68	Well 72	Well 73	Well 75	We11 76	Well 80	
Gross alpha	8.4	0.9	1.4	6.5	11	3.6	0.4	
Gross beta	7.1	1.9	4.6	7.7	22	6.9	3.2	
Ra-226	0.7			0.3	••			
Ra-228	0.3			0.9	••		· •	
U-total	7.4			3.1	16		2.2	
Th-228	0.9			1.7	0.6		0.3	
Th-230	9.9	•		6.7	12		0.0	
Th-232	0.2			0.2	0.2	••	0.1	
Depth to water (m)	1.5	4.4	10.0	8.4	7.6	13.8	5.3	

3-2

Table 3.3 (Continued)

			Concentrat	ions (pCi/1)			-
Radionuclide	Well 81	Well 82	Well 83	Well 84	Well 87	Well 88	We11 89
Gross alpha	7.9	17	9.0	13	1.5	11	3.7
Gross beta	16	47	18	27	7.2	18	9.1
Ra-226	0.8	0.3	3.4	1.7		2.3	
Ra-228	0.4	0.4	4.6	5.8		0.2	
U-total	4.9	13	1.6	9.0		3.0	
Th-228	0.9	0.4	0.2	0.6		1.1	
Th-230	0.9	1.8	0.4	1.3		1.5	
Th-232	0.3	0.3	1.0	1.1		4.0	
Depth to water (m)	4.8	5.1	3.9	7.0	9.4	8.6	7.5

Table 3.3 (Continued)

			Concentrations (pCi/l)		
Radionuclide	Well 90	Well 92	Well 93	Well 94	
Gross alpha	2.2	7.3	7.4	1.6	
Gross beta	6.8	. 11	22	9.9	
Ra-226		1.0	1.6		
Ra-228	- -	0.8	1.4		
U-total		17	6.0		
Th-228		0.5	0.8		
Th-230		0.1	0.7	· · · · · ·	
Th-232		0.4	1.6		
Depth to water (m)	4.1	13.1	4.7	2.1	

^aRefer to Figure 2.5 for well location.

 $^{^{\}mathbf{b}}\mathbf{Dash}$ indicates analysis not performed.

Table 3.4 Radionuclide concentrations in Latty Avenue composite samples

			Concentrations (pCi/gm)							
Sample	U-235	U-238	Th-232*	Th-230	Th-228	Ra-226	Ra-228	Pa-231	Ac-227	
Composite 1	3.6 ± 0.3**	82 ± 8	2.3 ± 0.6	8770 ± 100	2.1 ± 0.5	64 ± 1	2.3 ± 0.6	114 ± 2	205 ± 2	
Composite 2	4.4 ± 0.3	62 ± 15	1.5 ± 0.5	8950 ± 370	2.0 ± 0.5	50 ± 1	1.5 ± 0.5	117 ± 8	Not Performed	
Average	4.0 ± 0.2	72 ± 9	1.9 ± 0.4	8860 ± 190	2.1 ± 0.3	57 ± 1	1.9 ± 0.4	116 ± 4	205 ± 2	

^{*}Based on Ra-228 and assumption of secular equilibrium of thorium decay series. **Errors are 2 σ based only on counting statistics.

Source: Table 2 (Cole, 1981).

4 APPLICABILITY OF THE BRANCH TECHNICAL POSITION

The NRC has established a Branch Technical Position (BTP) which identifies five acceptable options for disposal or onsite storage of wastes containing low levels of uranium and thorium (46 FR 52061, October 23, 1981). Options 1-4 provide methods under 10 CFR 20.302, for onsite disposal of slightly contaminated materials, e.g., soil, if the concentrations of radioactivity are small enough and other circumstances are satisfactory. The fifth option consists of onsite storage pending availability of an appropriate disposal method. Table 4.1 shows the radionuclide concentrations specified for the disposal options.

**

The material present in the West Lake Landfill is a form of natural uranium with daughters, although the daughters are not now in equilibrium. As mentioned above, the average concentration of Ra-226 in the West Lake Landfill wastes is about 90 pCi per gram, which (considered by itself) falls into Option 4 of the BTP since Option 4 criteria are controlled by the Ra-226 content in the wastes (i.e., 200 pCi of U-238 plus U-234 per gram would be accompanied by 100 pCi of Ra-226 per gram). However, because of the large ratio of Th-230 radioactivity to that of Ra-226, the radioactive decay of the Th-230 will increase the concentration of its decay product Ra-226 until these two radionuclides are again in equilibrium. Assuming the ratio of activities of 100:1 used above, the Ra-226 activity will increase by a factor of five over the next 100 years, by a factor of nine 200 years from now, and by a factor of thirty-five 1000 years from now. All radionuclides in the decay chain after Ra-226 (and thus the Rn-222 gas flux) will also be increased by similar multiples. Therefore, the long-term Ra-226 concentration will exceed the Option 4 criteria.

Table 4.1 Summary of maximum soil concentrations permitted under disposal options.

Source: 46 Federal Register 52061

	Dispo	sal opti	ons	
Kind of material	1 ^a	2 ^b	3 ^c	4 ^d
Natural thorium (Th-232 + Th-228) with daughters present and in equilibrium. (pCi/g)	10	50	-	500
Natural uranium (U-238 + U-234) with daughters present and in equilibrium. (pCi/g)	10	-	40	200

^aBased on EPA uranium mill tailings cleanup standards.

^bConcentrations based on limiting individual intruder doses to 170 mrem per year.

Concentration based on limiting equivalent exposure to 0.02 WL or less.

dConcentrations based on limiting individual intruder doses to 500 mrem per year and, in cases of natural uranium, limiting exposure to Rn-222 and its decay product airborne alpha emitters to 0.02 WL or less.

5 REMEDIAL ACTION ALTERNATIVE CONSIDERATIONS

The radioactive material as it presently exists does not pose an immediate health hazard for individuals living or working in the area of the landfill. However, there is a long-term potential for the radioactive material to pose a health problem. Therefore, this section discusses six (A-F) possible courses of action, of which all but A and D are considered temporary. Option A, in which no remedial action is proposed, is unacceptable because the concentrations of radionuclides in the landfill will become too high; Option A is described for comparison purposes only. Costs are based on the Dodge Guide to Public Works and Heavy Construction, 1984.

5.1 Option A: No Remedial Action

Under Option A, no remedial work would be done on the West Lake site. The land-fill and the radioactive soil would be left in their present condition. The contaminated areas would be available for demolition fill emplacement and final closure. It is not certain how much additional fill would be emplaced. Filling would be followed by normal landfill closure operations.

Normal closure procedures consist of applying at least 0.61 m (2 ft) of compacted final cover. A 0.3-m (1 ft) layer of topsoil would be placed over the cover and upgraded to support vegetation. Establishment of a vegetative cover would require seeding, liming, and fertilization. Surface seeps of leachate would be eliminated. Maintenance of the monitoring wells would be required to allow continued sampling by MDNR, should MDNR require such action. The public would be discouraged from entering the site. After closure, a detailed description of the site would be filed with the County Recorder of Deeds. This description would include: a legal description of the site, types and location of wastes present, depth of fill, and description of any environmental control or monitoring systems requiring future maintenance (MDNR, January 1983). MDNR regulations also specifically prohibit excavation or disruption of the closed landfill without written approval of MDNR; no time frame is stated with this regulation (MDNR, 1975).

There would be no further cost under this option since no remedial actions would be taken; i.e., costs are normal landfill costs.

5.2 Option B: Stabilization on Site With Restricted Land Use

Two areas in the landfill contain radioactive material. Therefore, the work required for this option is described separately for each area. Nevertheless, restrictions would be imposed on the use of land within each area. This would discourage future activities on these areas which might expose individuals to radioactivity. No additional landfill would be permitted to be deposited on either area.

Area 1

It is believed that a total of 2 to 3 m (7 to 10 ft) of soil has been added to most of Area 1 since the 1981 land survey by RMC. This cover has altered the radiation environment of the site. Measurements by Oak Ridge Associated Universities (ORAU) personnel in March 1984 (Berger) showed that only a very small area exceeded the exposure rate of 20 μ R/hr at 1 m. By extending the cover 20 m (66 ft) outward in all directions from the area showing an unacceptable surface exposure rate, the shallow wastes likely to give high rates of radon emanation will also be covered. The amount of radioactive debris in Area 1 is relatively minor compared with that present in Area 2. Therefore, a soil cover of 1.5 m (5 ft) is considered adequate to reduce surface exposure rates and radon emanation. After the soil cover is in place, a layer of topsoil 0.3 m (1 ft) thick would be emplaced, seeded, and mulched.

Area 2

Vegetation over Area 2 as well as on the slope of the berm would be cleared and placed in the demolition portion of the landfill or disposed of as is convenient. Brush should not be left in place and covered since this may reduce the integrity of the soil cap. Grass should be mowed, and may be left in place.

The berm on the northwest portion of the landfill which contains an estimated 7,500 m³ (9,800 yd³) of contaminated soil would be excavated and redeposited in

layers in a secure portion of the landfill. The actual amount can be determined by survey during implementation of the work.

All equipment and materials now stored over Area 2 would be removed to other portions of the site or disposed of as is convenient to the owners. Gravel piles found on Area 2 should be removed to other portions of the site after having been surveyed to ensure that contaminants have not been mixed with the gravel. However, the lower 10 to 15 cm (4 to 6 in.) of rock should be left in place and covered with the soil cap, since this gravel may have become mixed with contaminated soil.

Such stabilization would place the contaminated soil well below the surface and would prevent radioactive materials from eroding as can now occur along sections of the berm. Stabilization would require emplacement of a soil cover of 48,000 m³ (63,000 yd³) to give a final slope of 3:1 with 1.5 m (5 ft) of soil at the top of the berm. At least 1.5 m (5 ft) of soil cover would be used, as this much soil will be required to reduce radon gas exhalation. The final slope of 3:1 on the berm would be shallow enough to prevent failure and, after the cover is emplaced, it should be further covered with at least 0.3 m (1 ft) of topsoil and seeded with native grasses to prevent erosion. The slope would be directed radially outward from the center of the cap. An interceptor ditch would be provided around the cap to channel runoff and prevent gullies from being cut into the stabilized cover. The cover soil presently used in the landfilling operations may be used to stabilize the berm. This soil is a clay silt (loess) excavated near the West Lake Landfill site.

The portion of Area 2 to be covered by the soil cap includes that portion of the landfill identified in the RMC survey as having surface exposure rates greater than 20 μ R/hr at 1 m (3.3 ft) above ground level, along with those areas in which auger holes revealed radium-bearing soil within 1 m of the surface. The shallow contaminants may be sufficiently shielded to produce low surface exposure rates; however, these shallow deposits will still produce radon emanations greater than the desired level of 20 pCi/m²s. Therefore, the soil cover must be extended over these areas of shallow contamination.

The cover soil used should be capable of compaction to a permeability of less than 10-7 cm/s in order to keep radon release and soil leaching as low as possible. This value is based on common practices used for sealing of hazardous waste landfills. Because accurately measuring permeability of this magnitude is difficult, the value of 10-7 cm/s should be used only as a target criterion which should, if possible, be bettered. If laboratory testing of the cover soil presently used at the West Lake Landfill indicates that this permeability can be achieved, this soil would be acceptable for use as the soil cap. Otherwise, clay soil would have to be imported from off the site to be used in constructing the soil cap.

The overall estimated cost for the required work under Option 8 is approximately \$360,000 (Table 5.1) and would require about 2 months to complete. Costs of this option may be higher if the total quantity of contaminated material to be moved is higher than the estimated quantity.

5.3 Option C: Extending the Landfill Off Site

Soil eroding on the northwest berm of Area 2 is carrying contaminated soil off the landfill property onto an adjacent cultivated field. A contributing factor to the erosion is the steepness of the berm. It would, therefore, be desirable to lessen the slope's steepness by extending the berm onto the adjacent field. This option would require the acquisition of approximately 2 ha (5 acres) of land not owned by the landfill company.

In this option, Area 1 would be treated the same as in Option B. The contaminated portion of the northwestern berm of Area 2 would not be disturbed. Instead the existing berm would be extended 13 to 16 m (42 to 52 ft) onto the adjacent field. This would require an additional solid volume of approximately 20,200 $\rm m^3$ (26,400 $\rm yd^3$) to give a final slope of 3:1 with 1.5 m (5 ft) of soil on top of the berm. As in Option B, this cover should receive an additional 0.3 m (1 ft) of topsoil and be seeded with native grasses to prevent erosion.

This option will require the relocation of three transmission poles. All other necessary work for Option C is as described for Option B.

The overall estimated cost for required work under Option C is approximately \$470,000 (Table 5.2) and would require about 2 months to complete. The extent of work required under this option is well defined.

5.4 Option D: Removing Radioactive Soil and Relocating It

This option would involve excavating and removing all contaminated soil and debris from the West Lake Landfill and relocating it to an authorized disposal facility.

Vegetation over Areas 1 and 2 would be cleared and placed in the demolition portion of the West Lake Landfill.

All equipment stored on the two contaminated areas would be removed to another portion of the site. Gravel piles in Area 2 should be removed. The lower 10 to 15 cm (4 to 6 in.) of rock should be left in place to be disposed of with other contaminated materials, since this gravel may have become mixed with contaminated soil at the surface.

The areas known to contain radioactive contamination at levels above the action criteria (20 μ R/hr at 1 m) would be excavated initially. Next, the excavated area would be surveyed to determine the extent of contamination remaining. Excavation would continue until unacceptable levels of contamination have been removed. Immediately after excavation, the soil would be placed in 208-liter (55 gal) approved drums (or other approved containers) for transport. Containment in the drums will prevent the spread of dust and loose soil during transport.

Some of the nonradiological hazardous material known to be present in the landfill could present a serious danger to workers should they excavate into this material. Proper precautions should, therefore, be taken as the work is being performed.

Estimated costs under Option D would be \$2,500,000 (Table 5.3). Transporting the contaminated soil to another site and emplacing the material there would significantly add to the cost. This option could be completed in about

3 months, providing that a suitable disposal facility were available to receive the contaminated waste.

5.5 Option E: Excavation and Temporary Onsite Storage in a Trench

Under this option, as much radioactive soil would be excavated as in Option D and would be placed in a specially prepared trench on the West Lake site but would not be placed in drums. This trench would become a temporary repository for the radioactive soil. The trench would be surrounded by an impervious clay liner to minimize leachate production and transport into the groundwater system. The cap should give acceptable rates of surface exposure and acceptable rates of radon gas release.

As under Option D, surface vegetation, machinery, and piles of crushed rock would be removed from the surface of areas to be excavated. Design of the trench is based upon the "secure landfill concept" (Shuster and Wagner, 1980) with three primary functions: eliminate direct gamma-ray exposure at the ground surface, reduce radon emanation, and prevent leaching of radionuclides to the groundwater system.

The excavated area would be cut to a maximum elevation of 140 m (460 ft) msl over the area to be covered by the trench. The base of the trench would cover an area 120×120 m (394 x 394 ft) and would have a negligible slope. Low spots would be filled with borrow soil* compacted to at least 90% of its standard Proctor density (SPD). Once the base for the trench has been leveled to a final elevation of about 140 m (460 ft) msl, a blanket of borrow soil at least 1.5 m (5 ft) thick compacted to at least 90% SPD would be emplaced. Specification of compaction of this underlayer is based on the requirement of avoiding subsidence which could cause the clay liner to crack and fail. A clay liner would be placed above the underlayer. The liner would be 0.5 m (1.6 ft) thick and would have a permeability less than 10^{-8} cm/s ($4 \times 10^{-9} \text{ in./s}$). An impermeable plastic liner could also be used.

^{*}Borrow soil refers to a clayey-silt loess (Soil Conservation Service type CL) excavated southeast of the site for use as daily cover in the landfilling operation.

Sides of the trench would be built at a 3:1 slope up to the level of the surrounding undisturbed landfill surface, about 143 m (470 ft) msl. The walls would consist of an underlayer and liner as described for the base. A layer of crusher-run limestone 0.5 m (1.6 ft) thick would be placed on top of the liner to allow leachate buildup in the trench to be monitored and to facilitate pumping should leachate buildup become a problem.

After the base and walls of the trench have been built, the previously excavated debris would be placed in the trench. Then the remaining radioactive debris would be excavated and placed in the trench. As excavation proceeds, it will become apparent how much volume the trench must have to contain all the contaminated soil. At this point, the walls of the trench would be raised to an appropriate level. Excavation and filling can then proceed until the work is complete. The final thickness of debris is expected to be from 4 to 6 m (13 to 20 ft).

A cover, as described below, would be placed over the debris. A 1 m (3 ft) layer of borrow soil compacted to 90% SPD will be placed over the debris. A clay liner 0.5 m (1.6 ft) thick of permeability less than 10^{-8} cm/s (4 x 10^{-9} in./s) would be placed over the borrow soil blanket. A 0.5-m (1.6-ft) layer of crusher-run limestone would be placed over the clay layer to prevent infiltration water from building up over the liner. A cover soil layer of average thickness about 2 m (7 ft) would be placed over the rock layer.

The cover soil would be compacted and built with a surface slope of from 2% to 4% to minimize erosion. Three-tenths of a meter (1 ft) of top soil would be placed over the cover layer and would be seeded and mulched to establish a vegetative cover.

Once the trench has been prepared to accept the soil, workers may begin to excavate contaminated soil. As under Option C, an initial excavation would remove the area of known contamination, and a cleanup phase would remove all soil containing radionuclide concentrations above an action level of 15 pCi/g Ra-226. As soon as the soil has been excavated, it would be hauled to the trench and emplaced. The contaminated soil should be sufficiently compacted to

prevent settling, to maintain the integrity of the soil cap. As fill is being emplaced, the pipe for a monitoring well would be extended upward from the base of the gravel underdrain. This well should be designed in a manner that would allow future installation of a pump for drawing off leachate should this become necessary.

Costs for Option E would be approximately \$2,150,000 (Table 5.4). The estimated costs vary somewhat, since the exact limits of excavation cannot be defined until work begins. This work would require approximately 4 months to complete.

5.6 Option F: Construction of a Slurry Wall to Prevent Offsite Leachate Migration

Under Option F, radioactive soil would be left in place at the West Lake site. The wastes would be stabilized by means of a soil cover (as under Option B) and a downgradient slurry wall would be built around the contaminated soil. The slurry wall would be intended to keep leachate from migrating off site. This remedial action would be somewhat more effective than Option B in reducing the potential for groundwater contamination. However, costs incurred would be substantially higher than those for Option B or C. Benefits would be rearly identical to those derived by the soil cover and berm stabilization alone; the sole advantage of Option F over Option B or C would be greater protection to groundwater in the Missouri River alluvium.

Vegetation, machinery, and piles of crushed rock would have to be removed as described for Option B. A slurry wall would be constructed by excavating a trench [approximately 1 m (3.3 ft) wide] to the depth of bedrock. This trench would be bored out in the presence of a mud weighted with bentonite (clay) to keep the walls from collapsing and to keep groundwater from intruding into the trench. The trench would be excavated in sections 6 to 8 m (20 to 26 ft) long. Once a section of trench has been excavated, concrete would be poured by tremie into the trench to displace the slurry. The final slurry walls would each consist of a concrete slab about 1 m (3.3 ft) thick extending to bedrock and partially encircling the bodies of radioactive soil in both Areas 1 and 2. A total of approximately 1300 linear meters (4,300 ft) of wall would be constructed to depths varying from 5 to 15 m (16 to 50 ft).

After each of the slurry walls had been emplaced, fill would be added along the face of the berm to stabilize the slope. Finally, a soil cover would be placed over the contaminated areas. The berm would be stabilized and the soil cover would be placed as outlined for Option B.

Costs of work required for Option F would be approximately \$5,600,000 (Table 5.5). The exact amount of slurry wall cannot be determined until work is begun; therefore, this cost will be highly variable. Since the walls should extend to bedrock, the depth of soil and landfill debris will govern the depth of the required wall. Slight errors in estimating the depth of alluvium could result in large errors in the cost estimate. It is estimated that it would take 6 to 8 months to complete this option.

Table 5.1 Itemized cost of remedial action, Option B

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1850/ha	\$ 5,365	*
Remove Shuman Building			\$ 6,200	**
Excavate contaminated soil and redeposit it at a secure site	7500 m³	\$10/m³	\$ 75,000	†
Emplace soil cover	48,000 m³	\$4.64/m³	\$222,720	Ť
Bury clean rubble	225 m³ .	\$12.50/m³	\$ 2,812	†
Seed and mulch cover Subtotal	3.3 ha	\$2165/ha	\$ 7,145 \$319,242	*
Contingency @ 10%			31,924	
Engineering and legal fees @ 5%		÷	<u>15,962</u>	·
Estimated total cos	t		\$360,000 ^{††}	

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

[†]Based on best estimated cost. ††Adjusted for deletion of building removal.

Table 5.2 Itemized cost of remedial action, Option C

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1850/ha	\$ 5,365	*
Remove Shuman Building		***	\$ 6,200	**
Relocate power transmission poles	3	\$2060	\$ 6,180	†
Stablize berm (fill)	20,200 m ³	\$6.70/m³	\$135,340	†
Emplace soil cover	48,000 m ³	\$4.64/m³	\$222,720	† .
Bury clean rubble	225 m³	\$12.50/m³	\$ 2,812	†
Seed and mulch cover Subtotal	3.3 ha	\$2165/ha	\$ 7,145 \$385,762	*
Contingency @ 10%		3	38,576	
Engineering and legal fees @ 5%			19,290	
Land acquisition Estimated total cost	2 ha	\$15,500/ha	31,000 \$470,000	,

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been remôved.)

[†]Based on best estimated cost.

Table 5.3 Itemized cost of remedial action, Option D

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1850/ha	\$ 5,365	*
Remove Shuman Building		•• .	\$ 6,200	朱 弇
Bury clean rubble	230 m ³	\$12.5/m ³	\$ 2,875	†
Excavate contaminated soil	70,000 m ³	\$5.25/m ³	\$ 367,500	†,††
Site decontamination	27,600 m ³	\$1.4/m ²	\$ 38,640	大大大
Packing waste for transportation	70,000 m ³	\$25/m ³	\$1,750,000	†
Subtotal			\$2,170,580	
Contingency @ 10%	•		217,058	
Engineering and legal fees @ 5%			108,529	
Estimated total cost	•		\$2,500,000	***

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

^{***}No costs have been included here for moving the waste, for emplacing it and for disposal facility users fees.

[†]Based upon best estimate.

^{††}Estimated quantity of soil having Ra-226 concentrations of 15 pCi/g or more.

Table 5.4 Itemized cost of remedial action, Option E

Item	Quantity	Unit price	Cost	Reference
Prepare secure trench	80,000 m ³	\$9/m ³	\$ 720,000	*
Clearing and grubbing	2.9 ha	\$1,850/ha	\$ 5,365	*
Remove Shuman building	,		\$ 6,200	**
Bury clean rubble	230 m ³	\$12.5/m ³	\$ 2,875	*
Excavate contaminated soil	70,000 m ³	\$5.25/m ³	\$ 367,500	*
Site decontamination	27,600 m ³	\$1.40/m ³	\$ 38,640	†
Emplace contaminated soil	70,000 m ³	\$10.3/m ³	\$ 722,200	*
Monitoring well		*	\$ 6,000	*
Seed and mulch cover Subtotal	0.08 ha	\$2,165/ha	\$ 200 \$1,868,980	†
Contingency @ 10%	•		186,900	
Engineering and legal fees @ 5%			93,450	•
Estimated total cost		÷÷	\$2,150,000	,

^{*} Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

[†] Based on best estimate.

Table 5.5 Itemized cost of remedial action, Option F

Item	Quantity	Unit price	Cost	Reference
Clearing and grubbing	2.9 ha	\$1,850/ha	\$ 5,365	*
Remove Shuman building			\$ 6,200	大 文
Relocate power transmission poles	7 poles	\$2,060/@	\$ 14,420	†
Construct slurry wall	11,000 m ²	\$402/m²	\$4,422,000	*
Stabilize berm	20,200 m ³	\$6.70/m ³	\$ 135,340	†
Emplace soil cap	48,000 m ³	\$4.64/m ³	\$ 222,720	†
Bury clean rubble	225 m ³	\$12.5/m ³	\$ 2,812	†
Seed and mulch cover Subtotal	3.3 ha	\$2,165/ha	\$ 7,145 \$4,816,002	*
Contingency @ 10%			481,600	
Engineering and legal fees @ 5%			240,800	
Land acquisition Estimated total cost	2 ha	\$15,500/ha	31,000 \$5,600,000	• • • • • • • • • • • • • • • • • • •

^{*}Dodge Guide to Public Works and Heavy Construction, 1984.

^{**}Ford, Bacon and Davis Utah, Inc., "Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri," NRC Contract No. NRC-02-77-197, 1978. (This Butler-type building has already been removed.)

[†]Based on best estimate.

6 REFERENCES

Berger, James D., <u>Survey of West Lake Site by Oak Ridge Associated Universities</u>, March 6, 1984.

Cole, L. W., <u>Radiological Evaluation of Decontamination Debris Located at the Futura Coatings Company Facility</u>, Oak Ridge Associated Universities, September 1981.

Dodge Guide to Public Works and Heavy Construction, 1984.

Emmett, L. F., and Jeffery, H. G., <u>Reconnaisance of the Groundwater Resources</u> of the <u>Missouri River Alluvium Between St. Charles and Jefferson City, Missouri, Hydrol. Inv. Atlas Ha-315, U. S. Geological Survey, Washington, D. C., 1968.</u>

Ford, Bacon and Davis Utah, Inc., <u>Engineering Evaluation of the Latty Avenue Site, Hazelwood, Missouri,</u> NRC Contract No. NRC-02-77-197,
Salt Lake City, Utah, 1978.

Freeze, R. A., and John Cherry, <u>Groundwater</u>, Prentice-Hall, Englewood Cliffs, N. J., 1979.

Goodfield, A. G., <u>Pleistocene and Surficial Geology of St. Louis and the Adjacent St. Louis County, Missouri</u>, University of Illinois, Ph.D. thesis, 1965.

Karch, Kenneth M., Director, Division of Environmental Quality, Missouri Department of Natural Resources, letter dated June 2, 1976, to James G. Keppler, Regional Director, NRC, June 2, 1976.

Long, James H., Director, Laboratory Services Program, <u>Report</u>, Missouri Department of Natural Resources, November 5, 1981.

Lutzen, Edwin E., Rockaway, John D., Jr., <u>Engineering Geology of St. Louis County</u>, <u>Missouri</u>, <u>Missouri</u> Geology Survey and Water Resources, Engineering Geological Series No. 4, Rolla, MO, 1971.

Martin, James A., and Jack S. Wells, <u>Guidebook to Middle Ordivician and Mississippian Strata</u>, St. <u>Louis and St. Charles Counties</u>, Missouri Geological Survey, Report of Investigation #34, 1966.

Miller, D. E., "Water", <u>The Resources of St. Charles County, Missouri,</u>
<u>Land, Water, and Minerals</u>, Wallace B. Howe and L. D. Fellows, eds., Missouri
Geological Survey, Rolla, MO., 1977, pp. 31-82.

Missouri Dept. of Natural Resources, Technical Bulletin concerning landfill closure, January 1983.

Reitz and Gens, Engineering Firm, Letter to Mr. Curtis Doe, Staff Engineer, Missouri Department of Natural Resources, June 20, 1983a.

Shuster, Edward R., and Louis E. Wagner, "The Role of the Secure Landfill in Hazardous Waste Management," in <u>Toxic and Hazardous Waste Disposal</u>, Vol. 4, Robert B. Pojasek, ed., Ann Arbor Science Publishers, 1980.

- Spreng, Alfred C., "Mississippian System", <u>The Stratigraphic Succession in Missouri</u>, John W. Koenig, ed., Missouri Survey and Water Resources, Vol. XL, 2nd series, 1961, p. 49-78.
- U. S. Department of Agriculture, Soil Conservation Service, Aerial Photograph No. TQ-2K, Frame 51, 1953.
- U. S. Dept. of Commerce, Environmental Data Service, <u>Climatological Data</u>, Vol. 66, No. 13, 1960.
- U. S. Nuclear Regulatory Commission, "Environmental Impact Appraisal Related to Further Decontamination Action at the Latty Avenue Site," Docket No. 40-8035 (draft report), 1981.
- U. S. Nuclear Regulatory Commission, NUREG/CR-2722, "Radiological Survey of the West Lake Landfill St. Louis County, Missouri," May 1982.
- U. S. Nuclear Regulatory Commission, "Disposal or Onsite Storage of Thorium or Uranium Wastes From Past Operations, Branch Technical Position"
 46 FR 52061, October 23, 1981.

EG::G ENERGY MEASUREMENTS GROUP

EGG-1183-1721 UC-41 SEPTEMBER 1979 THE

RECORD

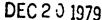
SELECTION

LADDENATORY

OF THE UNITED STATES

AN AERIAL RADIOLOGICAL SURVEY OF THE AREA SURROUNDING THE

MALLINGIARODT NUCLEAR ARYLAND HEIGHTS FACILITY


AND TWO ADDITIONAL SITES

ST. LOUIS, MISSOURI

DATE OF SURVEY: OCTOBER 1977

Exhibit 14-F

EGG-1183-1721 September 1979

inumulation of RUGRAM

AN AERIAL RADIOLOGICAL SURVEY OF THE AREA SURROUNDING THE

MALLINCKRODT NUCLEAR MARYLAND HEIGHTS FACILITY

AND -

Two additional sites

ST. LOUIS, MISSOURI DATE OF SURVEY: OCTOBER 1977

> L. K. Hilton **Project Scientist**

E 600

APPROVED FOR PUBLICATION

T. P. Stuart, Manager

Remote Sensing Sciences Department

This Document is UNCLASSIFIED

G. P. Stobie

Classification Officer

This work was performed by EG&G for the United States Nuclear Regulatory Commission through an EAO transfer of funds to Contract No. DE-ACO8-76NVO1183 with the United States Department of Energy.

ABSTRACT

An aerial radiological survey to measure terrestrial gamma radiation was carried out over the Mallinckrodt Nuclear Maryland Heights Facility during October 1977.

At the same time the following properties were also surveyed: a parcel near 9200 West Latty Avenue, which included a portion of St. Louis International Airport; and land used by West Lake Landfill, Inc., which is 8 km northwest of the airport.

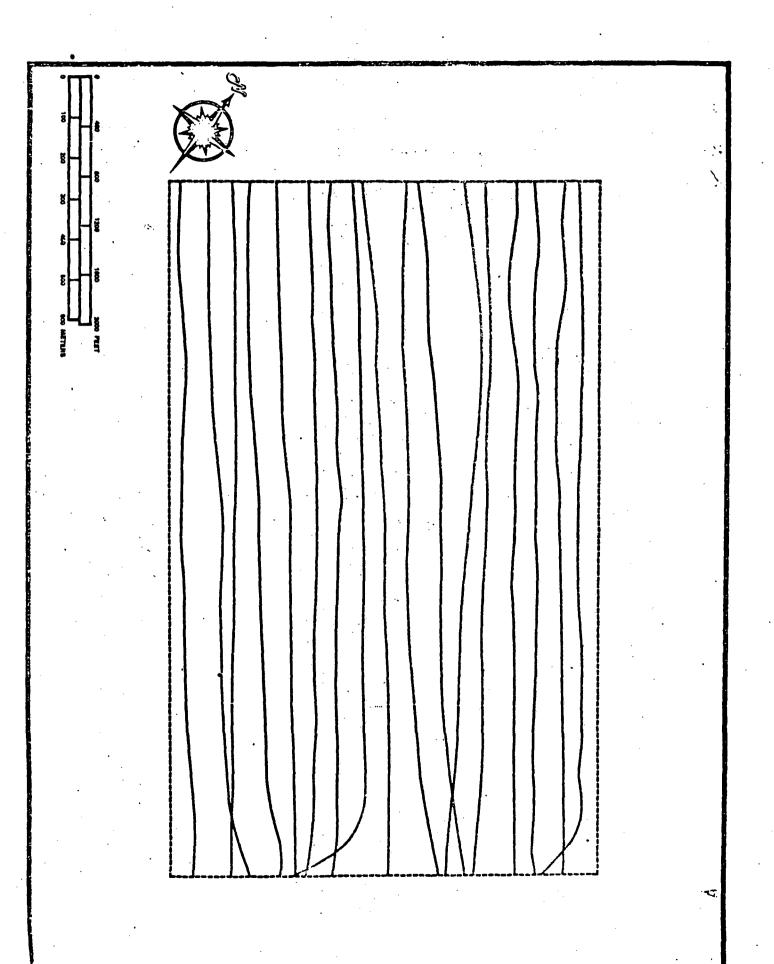
Gamma ray data were collected by flying parallel lines 60 m apart. The total area surveyed over the three sites was 7.4 km².

Processed data indicated that detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters, except at certain locations described in this report.

Average exposure rates 1 m above the ground, as calculated from aerial data, are presented in the form of an isopleth map. No ground sample data were taken at the time of the aerial survey.

CONTENTS

Abstract	3
----------	---


Sections	Se	C	ti	0	n	S
-----------------	----	---	----	---	---	---

1.0	introduction /
2.0	Survey Area History and Location 7
3.0	Survey Method and Airborne Equipment 7
1.0	Data Processing Methods 7
5.0	Discussion and Results 11
	5.1 Mallinckrodt Nuclear Facility 13
	5.2 Latty Avenue and Airport 15
	5.3 West Lake Landfill 17

Figures

•	ragit Lines. Maintextout Nuclear
2	Flight Lines: Latty Avenue 8
3	Flight Lines: West Lake Landfill 9
4	Hughes H-500 Helicopter Containing the REDAR System 10
5	Mobile Computer Processing Laboratory 11
6	Gross Count Rate Isopleths - Aerial Data — Mallinckrodt Nuclear Site 12
7 .	Background-Subtracted Energy Spectrum: Mallinckrodt Nuclear Site 13
8	Exposure Rate Isopleths: Latty Avenue 14
9	Background-Subtracted Energy Spectrum: Latty Avenue 15
0	Exposure Rate Isopleths: West Lake Landfill 16
1	Background-Subtracted Energy Spectrum: West Lake Landfill 17
	•

References 19

1.0 INTRODUCTION

The United States Department of Energy (DOE) maintains an aerial surveillance operation called the Aerial Measuring System (AMS).* AMS is operated for DOE by EG&G. This continuing nationwide program, started in 1958, involves surveys to monitor radiation levels in and around facilities producing, utilizing, or storing radioactive materials. The purpose of the survey is to document, at a given point in time, the location of all areas containing gamma emitting radioactivity (visible at the surface), and to aid local personnel in evaluating the magnitude and spatial extent of any radioactive contaminants released into the environment. At the request of DOE, or other federal and/or state agencies (such as the United States Nuclear Regulatory Commission), AMS is deployed for various aerial survey operations.

AMS was utilized during the period 22-28 October 1977 to radiometrically survey an area 1.6 km² centered on the Mallinckrodt Nuclear Maryland Heights Facility. Also surveyed was an area 3.2 km² surrounding 9200 West Latty Avenue, which included a portion of the St. Louis International Airport A third site surveyed was a 2.6 km² area centered on property operated by West Lake Landfill, Inc., 8 km northwest of the airport.

The St. Louis International Airport was the survey base of operation.

2.0 SURVEY AREA HISTORY AND LOCATION

The Mallinckrodt Nuclear Maryland Heights Facility is located at 2703 Wagoner Place, St. Louis, Missouri. This plant receives radioisotopes from various vendors and converts them to radio pharmaceutical materials. Radioisotopes which they handle include ¹³¹I, ^{99th}Tc, ⁹⁹Mo, ⁷⁵Se, and ⁵⁹Fe. Mallinckrodt Nuclear is a Division of Mallinckrodt, Inc. (formerly, Mallinckrodt Chemical Works). Mallinckrodt, Inc. acquired the Maryland Heights facility from Nuclear Consultants, Inc. in 1965.

It is reported in an ORNL report² and a NRC report³ that during the period 1942 through the late 1950's Mallinckrodt Chemical Works of St. Louis processed uranium ore. Some of the ore

residues and processed wastes were stored on the airport property.

In early 1966 these ore residues and uraniumbearing processed wastes were moved from the airport property by the Continental Mining and Milling Company of Chicago, Illinois to the Latty Avenue site.

In January, 1967 the Commercial Discount Corporation of Chicago, Illinois purchased the residues; much of the material was then dried and shipped to the Cotter Corporation facilities in Canon City, Colorado. The source material remaining at the Latty Avenue site was sold to the Cotter Corporation in December, 1969. Records indicate that residues remaining on the site at that time included 74,000 tons of Belgian Congo pitchblende raffinate containing about 113 tons of uranium; 32,500 tons of Colorado raffinate containing about 48 tons of uranium; and 8,700 tons of leached barium sulfate containing about 7 tons of uranium. During the period August through November, 1970 Cotter Corporation dried some of the remaining residues and shipped them to their mill in Canon City, Colorado. By December, 1970 an estimated 10,000 tons of Colorado raffinate and 8,700 tons of leached barium sulfate remained at the Latty Avenue site.

In April, 1974 a NRC inspector was informed that the remaining Colorado raffinate had been shipped in mid-1973 to Canon City without drying and that the leached barium sulfate had been transported to a landfill area in St. Louis County. A reported 12 to 18 inches of topsoil had been stripped from the Latty Avenue site: this supposedly had been removed with the leached barium sulfate. However, analyses of soil samples taken during a NRC investigation of the Latty Avenue site in 1976 indicated the presence of uranium- and thorium-bearing residues.

The West Lake Landfill property is located off St. Charles Rock Road near Taussig Road, approximately 8 km northwest of the airport.

3.0 SURVEY METHOD AND AIRBORNE EQUIPMENT

An enlarged aerial photo of each site was used to lay out the survey flight lines (Figures 1, 2, and 3). The navigator visually directed the aircraft

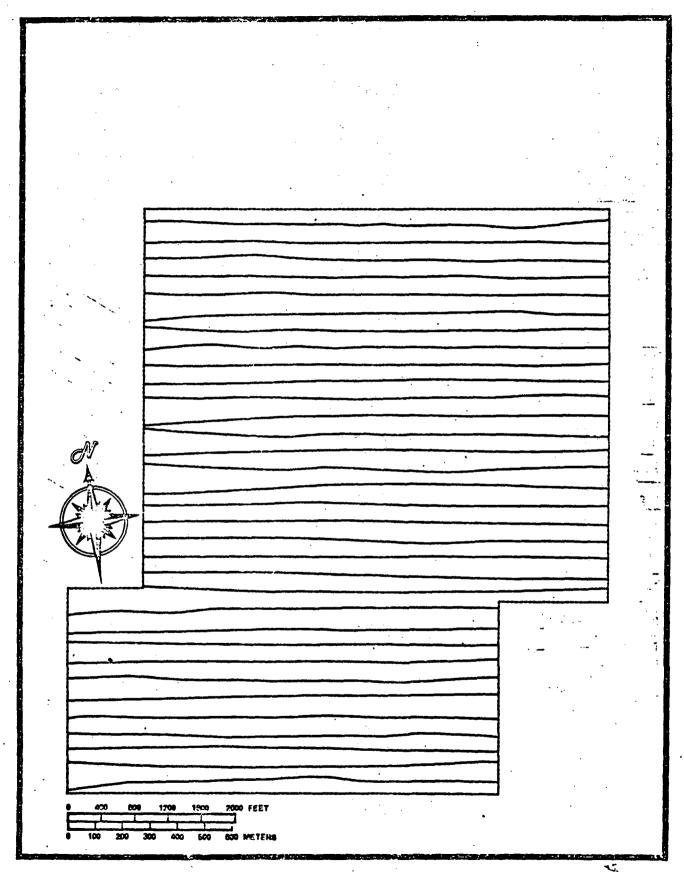
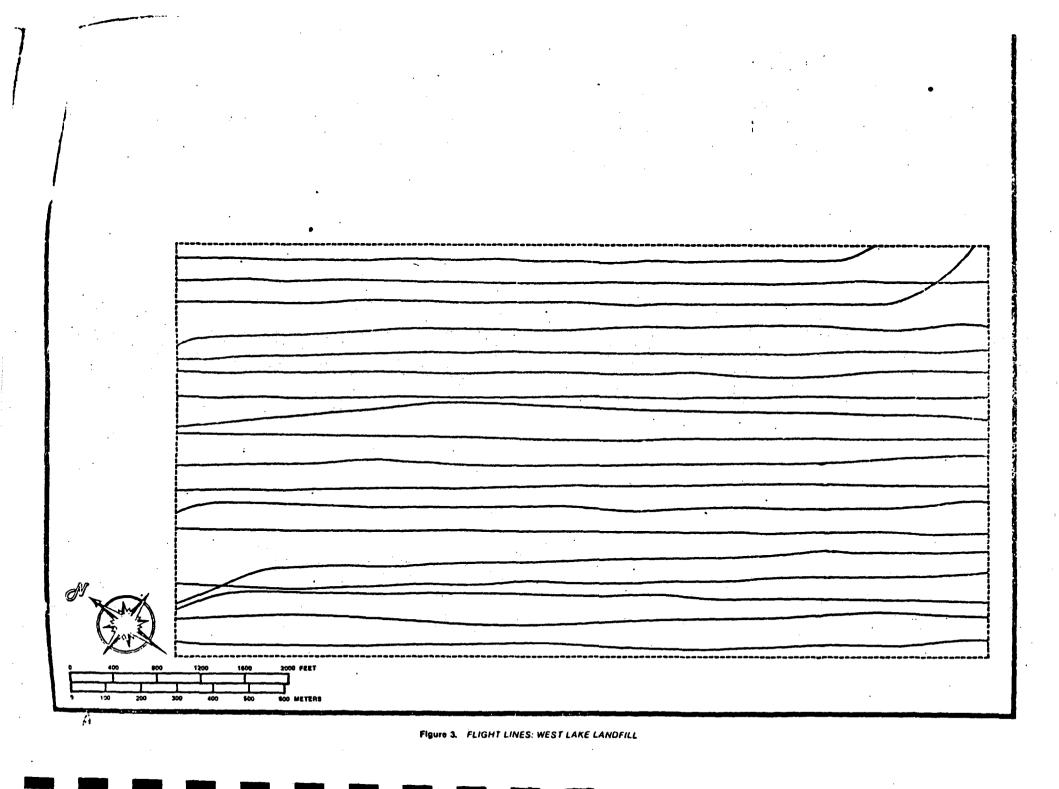



Figure 2. FLIGHT LINES: LATTY AVENUE

along the programmed flight lines on the photograph. The survey pattern consisted of parallel lines at 60 m intervals. Flight altitude was 60 m.

A Hughes H-500 helicopter was utilized for the survey (Figure 4). The H-500 carried a crew of two: pilot and navigator. The helicopter employed a lightweight version of the Radiation and Environmental Data Acquisition and Recorder system (REDAR). Two pods were mounted on the sides of the helicopter: each pod contained ten 12.7 cm diameter by 5.1 cm height NaI(TI) detectors. Gamma ray signals from the 20 detectors were summed and routed through an analog-to-digital converter and a pulse-height analyzer. Gamma spectra were accumulated in 3-second intervals and recorded on 1/2 inch magnetic tape.

The helicopter position was established with two systems: a Trisponder/202A Microwave Ranging System (MRS), and an AL-101 radio altimeter. The trisponder master station

mounted in the helicopter interrogated two remote transceivers mounted on towers outside the survey area. By measuring the round trip propagation time between the master and remote stations, the master computed the distance to each. These distances were recorded on magnetic tape each second; in subsequent computer processing these were converted to position coordinates.

The radio altimeter similarly measured the time lag for the return of a pulsed signal and converted this to aircraft altitude. For altitudes up to 150 m, the accuracy was \pm 0.6 m or \pm 2%, whichever is greater. These data were also recorded on magnetic tape so that any variations in gamma signal strength caused by altitude fluctuation could be accurately compensated.

The detectors and electronic systems which accumulate and record the data are described only briefly here. They are described in considerable detail in a previous report.

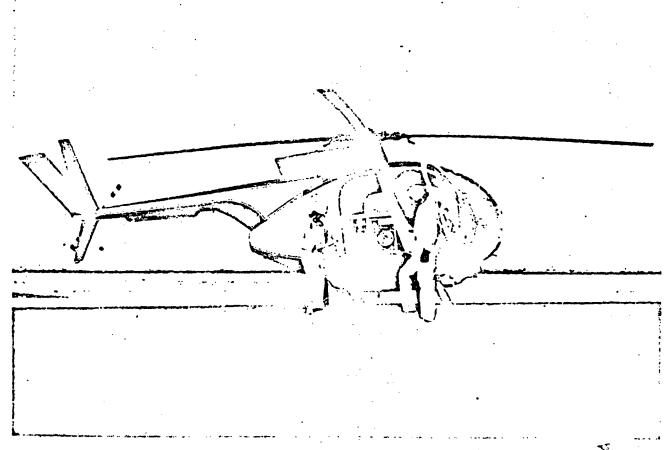


Figure 4. HUGHES H-500 HELICOPTER CONTAINING THE REDAR SYSTEM

4.0 DATA PROCESSING

Data processing was done with the Radiation and Environmental Data Analyzer and Computer system (REDAC). This is a computer analysis laboratory mounted in a mobile van (Figure 5).

REDAC consists primarily of two Cipher Data tape drives, a Data General NOVA 840 computer, two Calcomp plotters, and a Tektronics CRT display screen. The computer has a 32 k-word core memory and an additional 1.2 x 106-word disc memory. An extensive collection of software routines is available for data processing.

The gross count data were corrected for system dead time and altitude deviation. Corrections to the gross count rates were also made for contributions from radon, aircraft background,

and cosmic rays. Flights over the Missouri River were used for this purpose.

The corrected gross count rates were converted to exposure rates at 1 m altitude, with the factor 1024 counts per second (cps) per μ R/h obtained from calibration data over a Nevada test range.

5.0 DISCUSSION AND RESULTS

Analysis of the radiological data taken over the area surrounding each of the sites discussed in this report indicates that the terrestrial radioisotopes and associated gamma ray exposure rates were consistent with the natural background normally found within areas having a similar geological basis. These background exposure rates were in the 8-11 μ R/h range, including 3.7 μ R/h due to cosmic rays.

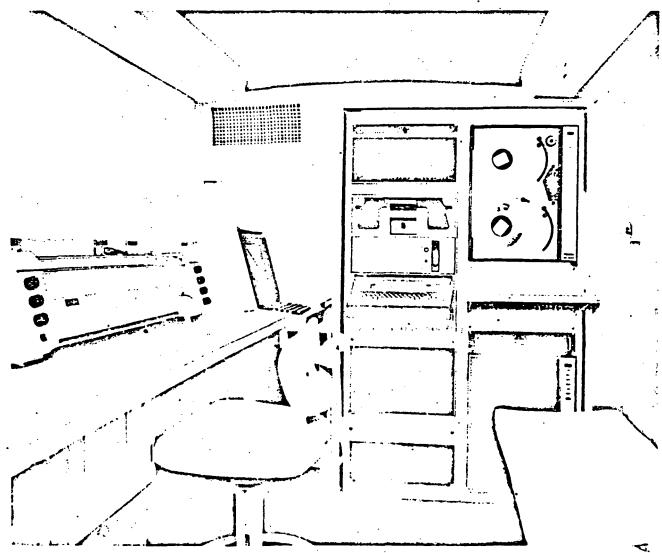
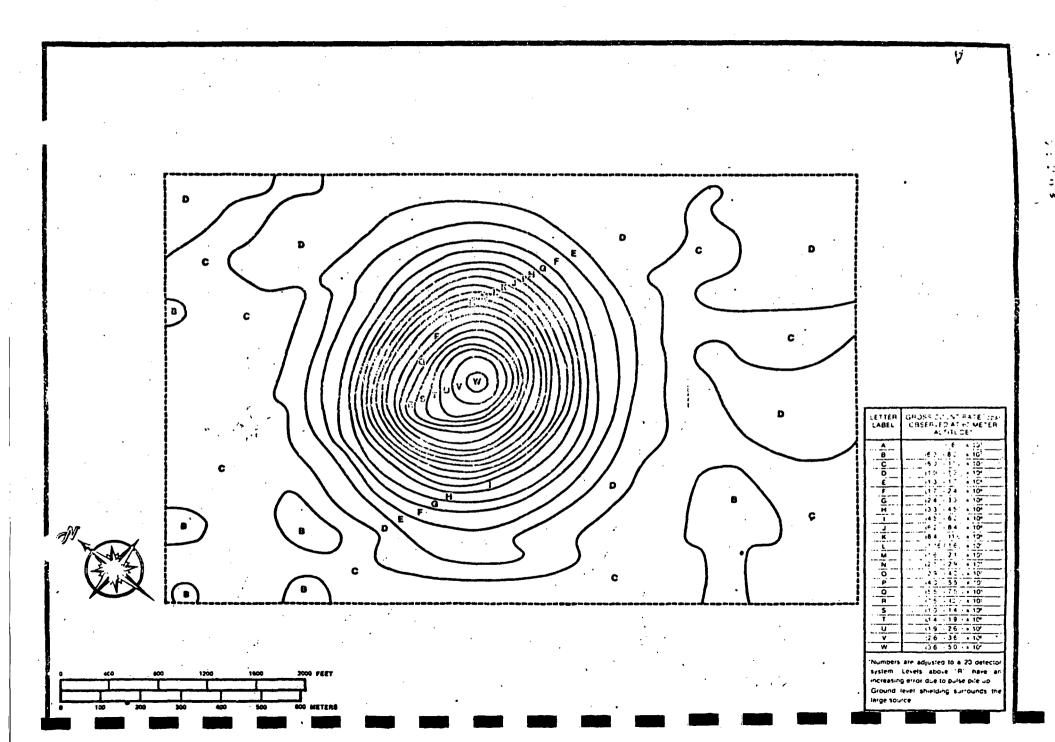



Figure 5. MOBILE COMPUTER PROCESSING LABORATORY

₹.

5.1 Mallinckrodt Nuclear.

Figure 6 presents gross count rate isopleths superimposed on an aerial photograph of the Mallinckrodt Nuclear Maryland Heights Facility. The isopleths shown in this figure are consistent with the existence of point sources in a storage room which has heavily shielded walls at the ground level but a lightly shielded roof. Due to this difference in shielding the aerially determined isopleths are not representative of what would be measured on the ground. For this

reason, and because conversion factors apply only to uniform horizontal distributions at the ground level, the letter labels in Figure 6 have not been converted to exposure rates at the 1 m level.

Figure 7 is a background-subtracted energy spectrum of the radiation from the area of increased activity. Photopeaks observed are 364 keV and 637 keV from ¹³¹I, 740 keV and 780 keV from ⁹⁹Mo, and 1.095 MeV and 1.292 MeV from ⁵⁹Fe. All three of these isotopes are received by the Facility for processing.

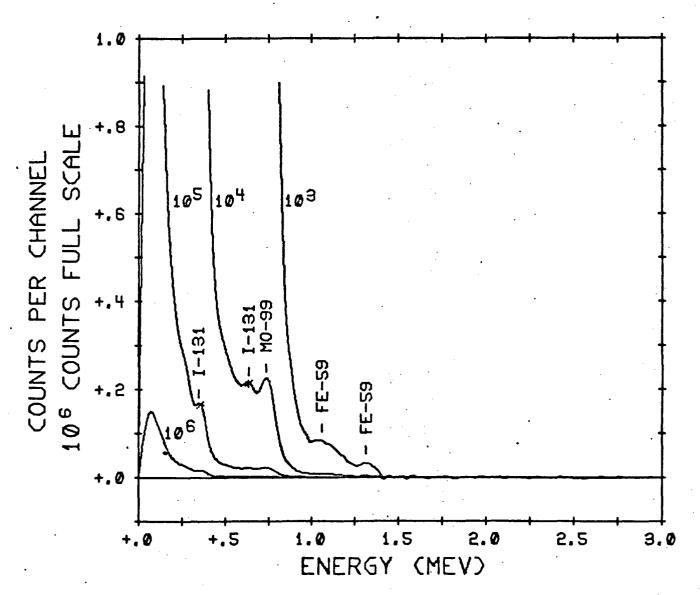


Figure 7. BACKGROUND-SUBTRACTED ENERGY SPECTRUM: MALLINCKRODT NUCLEAR SITE This spectrum characterizes the enhanced activity observed in Figure 6.

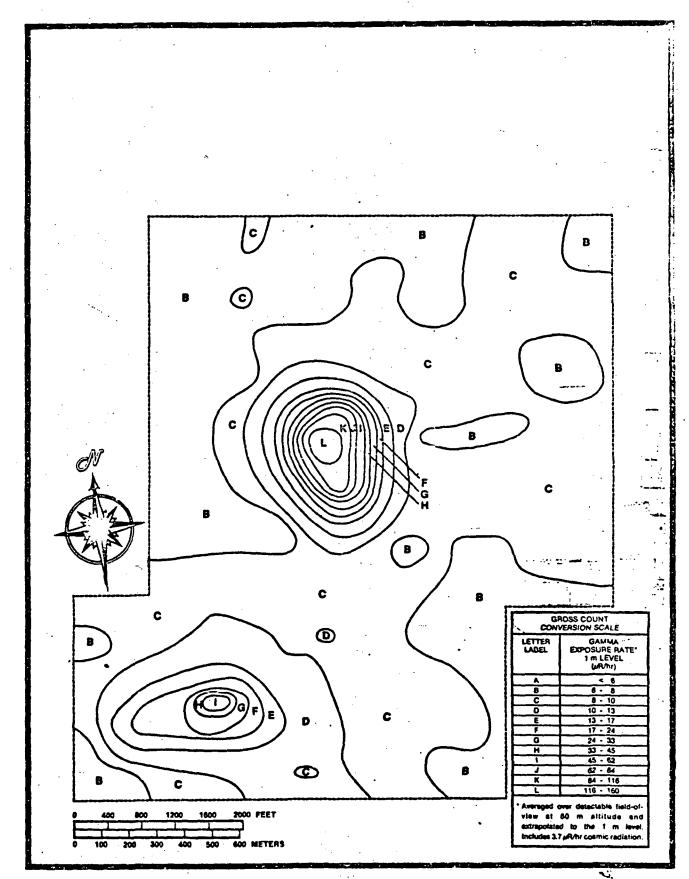


Figure 8. EXPOSURE RATE ISOPLETHS: LATTY AVENUE

5.2 Latty Avenue and Airport

Figure 8 presents the exposure rate isopleths superimposed on an aerial photograph of the site. Figure 9 is a background-subtracted energy spectrum of the radiation characteristics of both areas of increased activity. Radiation from ²¹⁴Bi accounts for all the major photopeaks observed.

This isopleth map (Figure 8) is based on gross counts (integral counts in the energy region

between .05 MeV and 3 MeV). The factor used to convert these counts to the exposure rate at the 1 m level was determined from measurements at a calibration site containing a typical mix of naturally occurring radionuclides. Since the spectrum shown in Figure 9 is different from a typical natural spectrum, the conversion factor may be in error. The isopleths, which represent ground level exposure rates for distributed sources, are consistent with sources whose lateral dimensions are a few hundred feet.

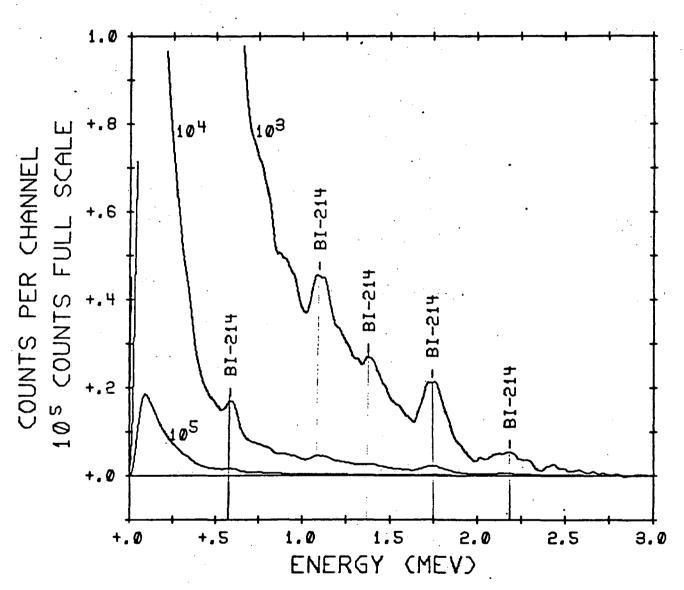
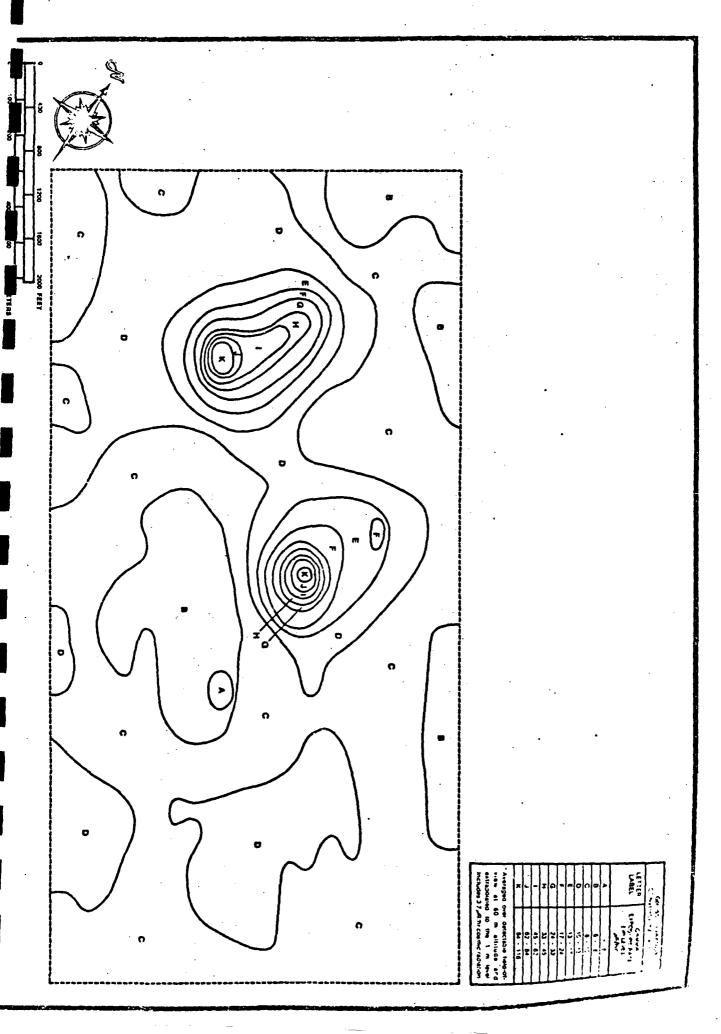



Figure 9. BACKGROUND-SUBTRACTED ENERGY SPECTRUM: LATTY AVENUE

This spectrum of gamma radiation was characteristic of the areas of increased activity at Latty Avenue and the airport as shown in Figure 8.

5.3 West Lake Landfill

Figure 10 presents the exposure rate isopleths superimposed on an aerial photograph of the site. Figure 11 is a background-subtracted

energy spectrum of the radiation characteristic c both areas of increased activity. Radiation from 214Bi accounts for all the major photopeak observed.

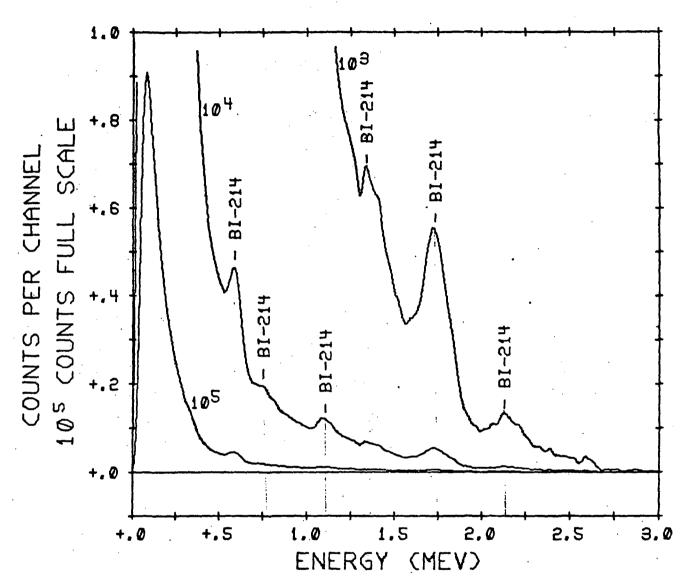


Figure 11. BACKGROUND-SUBTRACTED ENERGY SPECTRUM: WEST LAKE LANDFILL
Photopeaks shown here characterize both areas of enhanced activity in Figure 10.

REFERENCES

- 1. Boyns, P. K. July 1976. The Aerial Radiological Measuring System (ARMS): Systems, Procedures, and Sensitivity (1976). Report No. EGG-1183-1691. Las Vegas, NV: EG&G.
- 2. Oak Ridge National Laboratory. September 1977. Radiological Survey of the Property at 9200 Latty Avenue, Hazelwood, Missouri. Interim Report. Oak Ridge, TN.
- 3. Nuclear Regulatory Comission, Office of Inspection and Enforcement. 20 October 1976.

 Investigation Report No. 76-01. Glen Ellyn, IL.

DISTRIBUTION

NRC

B. H. Weiss (15)

DOE/OES

L. J. Deal (5)

DOE/MA

R. E. Lounsbury (1)

DOE/TIC

T. B. Abernathy (2)

DOE/NV

H. F. Hahn, EMO (1)

D. G. Jackson (3)

J. A. Koch (1).

R. R. Loux - (1)

J. K. Magruder (1)

R. B. Purcell (2)

H&N

W. E. Anderson (1)

LBL

H. A. Wollenberg (1)

EG&G

H. M. Borella, SBO (2)

J. F. Doyle, LVAO (1)

W. A. Frankhauser, WAMD (3)

L. A. Franks, SBO (1)

L. K. Hilton, LVAO (1)

H. A. Lamonds, SBO (1)

R. L. Lynn, SBO (1)

T. C. Maguire, WAMD (1)

R. A. Mohr, SBO (1)

L. G. Sasso, LVAO (1)

G. R. Shipman, WAMD (1)

G. P. Stobie, LVAO (1)

E. J. Story, LVAO (1)

T. P. Stuart, LVAO (1)

W. J. Tipton, LVAO (1)

G.G. Widner, LVAO (1)

LIBRARIES

AMO (50)

Las Vegas (1)

Santa Barbara (2)

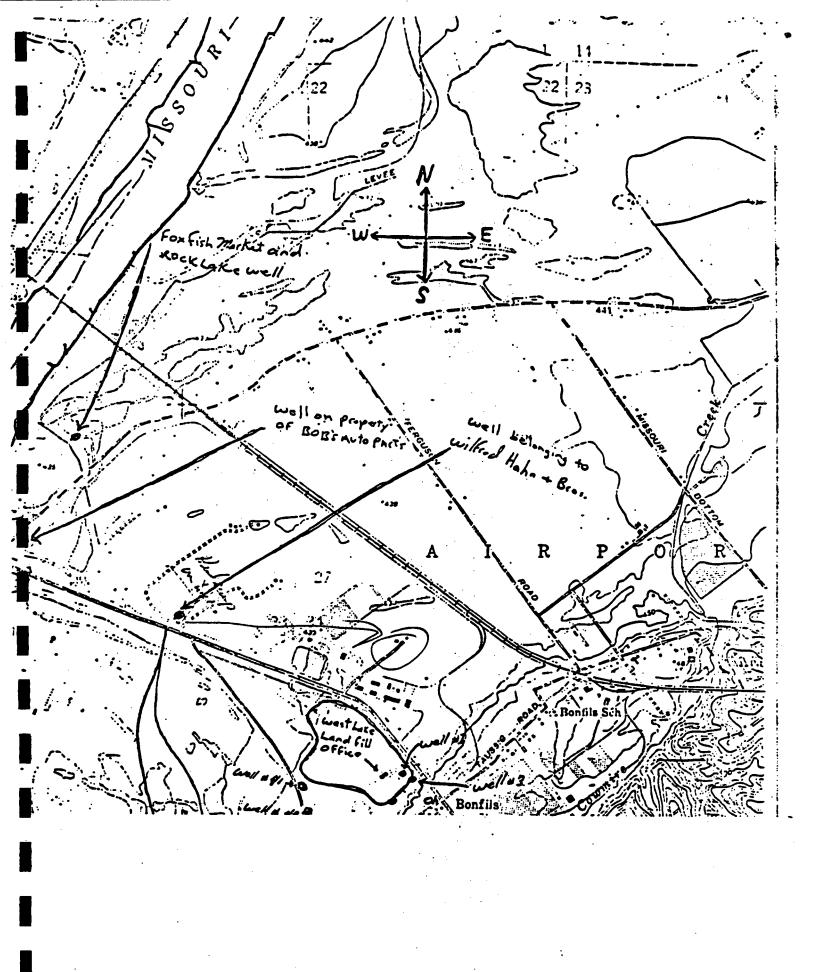
MALLINCKRODT NUCLEAR MARYLAND HEIGHTS
FACILITY
AND TWO ADDITIONAL SITES
ST. LOUIS, MISSOURI
EGG-1183-1721

DATE OF SURVEY: OCTOBER 1977 DATE OF REPORT: SEPTEMBER 1979

SEDY .	POTENTIAL	HAZARDOUS WAS	TE SITE		REC	STI2 HOIS	NUMBER	
80L9 M		TIVE DISPOSITI		 			00799009	
File this form in the regional Haza System: Hazardous Waste Enforcer		(EN-335); 401 M	St. SW; Wast			otection A	ency; Site	Tracking
A. SITE NAME	· · · · · · · · · · · · · · · · · · ·	I. SITE IDENTIF	H. STREET					
Westlake Landfill			13570 St.	Charle	s Rock	Rd.		· .
C. CITY			D. STATE			E. ZIP CO		
Bridgeton	·		Mo.	<u> </u>		630)44	· ·
Indicate the recommended action(s		II. TENTATIVE D		rking (Y)	in the sac	modale ha	Yes.	
The recommended actions	, and akencylie:	-, mac should be it	oy me	ALIES A	m use app		AGENCY	
REC	OMMENDATION		·	MARK'X'	EPA	STATE	LOCAL '	PRIVATE
A. NO ACTION NEEDED NO HAZA	RO							
B. INVESTIGATIVE ACTIONIS NEED	DED (II yea, comp	dere Section III.)	· 		х	,	:	
C. REMEDIAL ACTION NEEDED (11)							-	ļ.
ENFORCEMENT ACTION NEEDEL O. be primarily managed by the EPA o la anticipated.)	O (II yee, specify or the State and wh	in Part E whother the	e case will nt action				`	<u> </u>
E. RATIONALE FOR DISPOSITION Dioxin has not been di	scovered at	this site i	n any of	the sam	pling e	efforts	, nor do	es ther
appear to be a problem	with any c	of the 'stand	ard' haza	rdous w	astes.	There	is stro	ong
evidence of radioactiv	e component	s above acce	ptable li	míts in	the la	andfill.	. No of	j-site
migration of these com			trategy f					<u>ٽ</u>
F. INDICATE THE ESTIMATED DAT (mo., day, & yr.)	E OF FINAL DIS	POSITION	G. IF A CASE ESTIMATE (cio., day, 8	D DATE O			SSARY, IND	
H. PREPARER INFORMATION								•
1, NAME		1	2. TELEPHO		E R		A T E (mo., de	y. & yr.) .
Steven Kinser	===		913-236-			111.	-06-85	
A. IDENTIFY ADDITIONAL INFORMA		NVESTIGATIVE A						
		•					•	
							•	
See Above.	•		•	-				.•
·		·	• •					•
B. PROPOSED INVESTIGATIVE ACT	TIVITY (Deceited	Inlometion)			-,	··· · -		
	2. SCHEDULED	3. TO BE						
1. METHOD FOR OBTAINING NEEDED ADDITIONAL INFO.	DATE OF ACTION	PERFORMED BY	ESTIMATED	,		S. REMAR	KS	•
. TYPE OF SITE INSPECTION	(mo.dev, & yr)	tractor, State, etc.)	MANHOURS				·	
(1)				1				
		T	T					
		 	 			<u> </u>	رستا الدادة	
(3)					,		RFUND	
b. TYPE OF MONITORING						KGA '	7 198	
			† . — —			SITE	LOG	· — -
C. TYPE OF SAMPLING		1						
"	1	X	l· ·_ '	_				
× 5 MU	RECT		T					

EPA Form T2070-4 (10-79)

MISSOURI DEPARTMENT OF NATURAL RESOURCE DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM


REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

	•		•	
NAME OF FACILITY	West Lake L	andfill		
SAMPLES COLLECTED BY	Mike_Lincoln_	DATE(S) _	10-1-80	
NOTE:				
SAMPLE DESCRIPTION	Well #41	Well #40	Bahn Farmhouse	Well
DATE COLLECTED - SAMPLE NUMBER	10-1-80 80-7418	10-1-80 80-7419	10-1-80 80-7420	•
pH Units Specific Cond. (umhos/cm @ 25° C)	6.3 4000	6.7 1450	6.7 1000	
illigrams per liter	•			
BQD	∠12	∠ <u>12</u>	54 ³²	
■ COD	19.6	25.8	90.9	•
MH, as N	0.31	0.09	0.15	
NO3+NO2 as N	3.00	€0.05	0.47	
Total P	0.07	0.03	- 0.03	
		∠ 0.1	∠ 0.1	
Total Sulfide	∠0.1	37.6	67.3	
TOC	63.1		∠ 0.01	
Total Cyanide	∠0.01	∠ 0.01	300	•
Non-Filterable Residue (SS)	126	162	496	
Filterable Residue (TDS)	2744	839		
MAlkalinity as CaCO ₃	690	· · 500	. 360 .	
Fluoride	0.17	0.19	0.61	
Chloride 350 #	250 f	7.07	1.0	
Sulfate	1100	177		
Hardness as CaCO ₃ (Ca, Mg, Fe, Zn, Mn)	1450	591	3 99	
Potassium, Dissolved	12.3	7.6	6.9	
Sodium, Dissolved	268	33.8	6.1	
Calcium, Dissolved	429 .	166	122	
Magnesium, Dissolved	93	43	23	
	•	•	:	
icrograms per liter				
admium, Dissolved 10	7.2	0.6	0.1	
hromium, Dissolved	<u>45</u>	4 5	· 45	
Copper, Dissolved	5	5	. 41	
From, Dissolved, mg/1 13 *	2.08	2.82	3.13	•
ead, Dissolved 30	4	3	2	
Manganese, Dissolved 50 *	<i>6</i> 70	. 1310	770	
Mercury, Dissolved	· QNS*	QNS*	QNS*	
ickel, Dissolved	110	₩S- 4 20	<i>QNS</i> - ∠ 20	
Zinc, Dissolved, mg/l	9.72	3.5 0	0.05	
Arsenic, Dissolved	∠5	_	0. 03 < 5	
ilver, Dissolved	0.4	45		
*Quantity not sufficient	V.4	0.2 Evh	ibit 14-4°.4	
TOTAL COLOR OF THE PARTY OF THE	\	<u> </u>	IIUI I ETT	•

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY	West Lake Landfill	<u></u>	•
SAMPLES COLLECTED BY	Mike Lincoln	DATE(S) 10-1-80	
NOTE:			
SAMPLE DESCRIPTION	Fox Fish Market Well	•	Auto Parts
DATE COLLECTED - SAMPLE NUMBER	10-1-80 80-7421	10-1-80 80-7422	•
pH Units Specific Cond. (umhos/cm @ 25° C)	6. 6 9 50	6.6 1900	
La ligrams per liter			
BOD COD NH, as N NO ₃ +NO ₂ as N Total P	∠ 12 4.3 0.37 ∠ 0.05 0.21	12.1 0.23 <0.05 0.43	
Total Sulfide TOC Total Cyanide Ton-Filterable Residue (SS) Filterable Residue (TDS)	∠ 0.1 18.0 < 0.01 11 492	<0.1 35.7 ∠ 0.01 38 918	
lkalinity as CaCO ₃ fluoride Chloride ulfate ardness as CaCO ₃ (Ca, Mg, Fe,	396 0.42 7.0 63 394	580 0.22 112 84 623	
Zn, Mn) otassium , Dissolved odium, Dissolved Calcium, Dissolved Magnesium, Dissolved	3.8 18.4 110 29	10.3 54.5 187 38	•
icrograms per liter			
admium, Dissolved Chromium; Dissolved Copper, Dissolved ron, Dissolved, mg/l ead, Dissolved	0.2 - 5 4 4.18 2	0.7 2.5 3 18.6 7	•
Manganese, Dissolved Ercury, Dissolved Mickel, Dissolved Zinc, Dissolved, mg/l Esenic, Dissolved Liver, Dissolved *Quantity not sufficient	290 2N5* ← 20 0.02 ← 5 0.2		•

Goel 11/20/80

Report of Radionuclide Analysis of Water Sample Public Water Supply U.S. Environmental Protection Agency

(To be filled out by purestlake Quality To 10 out by purestlake Quality To 11 out by purestlak	17 TURAL RESOURCE	Date /	(Mo.) (Day) (Year) 21 Code 65/02
Lab Running Sample E Address and City 8	ept. of Community He Inviron. Health Labor Ol S. Brentwood Blyd	atories	O5 Staff
ran in no.	0260	musty of_	Start
Contaminant Name	Analysis Result	Analysis Date	Analysis Method
Gross Alpha Particle Activity (5pc./1 Radium - 226 Radium - 228	8.2=3.1, C/L 0.6=.1, C/	1214 180 80. Day Yr 121 4 180	Std Heth EPA-100/4-75=00\$
Gross Beta Particle Activity (50pc./1			·
Tritium Strontium - 90 Iodine - 131 Cesium - 134			

This form must accompany the radionuclide cubitainer to the laboratory. The public water supply will be notified by the Water Supply Field Office, U.S. EPA of the results of the radionuclide examinations.

Rock 11 / 20/80

Report of Radionuclide Analysis of Water Sample Public Water Supply U.S. Environmental Protection Agency

PWS 18 NO DOP 1 Address P. 1. B.	public water supply) 7/3 8 Atural Resources 0 x 1368 Saw City	Date	// /20/80 // /30 80 5.00 (Mo.) (Day) (Year)
Lab Running Sample Address and City	laboratory) Dept. of Community He Environ. Health Labor 801 S. Brentwood Blvd	atories .	
Lab ID No.	Clayton, Mo. 63105	Analyst	
Contaminant Name	Analysis Result	Analysis Date	Analysis Method
Gross Alpha Particle Activity (5pc./1 Radium - 226 Radium - 228	25 gCife 0.5 gCife	/2 4 80 80. Day Yr	St. 1 Meth. <u>EN-100/4-15</u> -0080
Gross Beta Particle Activity (50pc./1			
Tritium Strontium - 90 Iodine - 131			

This form must accompany the radionuclide cubitainer to the laboratory. The public water supply will be notified by the Water Supply Field Office, U.S. EPA of the results of the radionuclide examinations.

SOLID WASTE MANAGEMENT PROGRAM

LSP-69/5-5-80

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY We	est Lakes Landfill	<u> </u>	·
SAMPLES COLLECTED BY	Randy Crawford	DATE(S) 10-29-80	·
NOTE:	"	• .	
SAMPLE DESCRIPTION	Boring #1	Slough on N.W. edge (grab)	
DATE COLLECTED - SAMPLE NUMBER	10-29-80 80-7125	10-29-80 80-7126	
pH Units	6.6	7.5	•
Specific Cond. (umhos/cm @ 25° C)	500	745	
Milligrams per liter			
BOD	16	∠4	
COD	64.4	13.8	•
NH ₂ as N	0.84	0.04	
NO3+NO2 as N	0.54	0.08	
Total P	0.21	0.07	
MBAS Total Sulfide	0.34	∠ 0.04	
	25.8	∠ 1	
TOC	25.0	. 	
Total Cyanide Non-Filterable Residue (SS)	No Result*	9	
Filterable Residue (TDS)	No Result*	36 6	
Color Alkalinity as CaCO ₃	< 25	4 25	
Fluoride	0.42	0.36	
Chloride	6.5	<i>57.8</i>	
Sulfate	79	56	
Hardness as CaCO ₃ (Ca, Mg, Fe, Zn, Mn)	370	244	
Potassium			
Sodium Calcium			
Magnesium			
Temperature		90 _C	
Micrograms per liter	600	200 Total	
Barlum, <i>Dissolved</i> Cadmium, <i>Dissolved</i>	600 0.3	200 Total 0.1 Total	
Chromium, Dissolved	2	∠l Total	
Copper, Dissolved	3	∠l Total	
Iron, Dissolved	150	240 Total	
Lead, Dissolved Selenium, Dissolved	2 2	2 Total 25 Total	
Manganese, Dissolved	1000	70 Total	
Mercury, Dissolved	< 0.1	∠ 0.1 Total	
Nickel	700	14 Total	
Zinc, Dissolved	700	1€ 10tal ∠5 Total	
-Arsenic, Dissolved	1 40 2	∠ 0.1 Total	
Silver, Dissolved *No unfiltered sample	∠ 0.2	~ V.1 lucal	
TOD COLE F OO :			

MISSOURI DEPARTMENT OF NATURAL RESOURCLD DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY We	st Lakes Landfill		
SAMPLES COLLECTED BY	Randy Crawford	DATE(S) 10-30-80	
NOTE:			,
SAMPLE DESCRIPTION	Boring #2	Black Diamond Lake (grab)
DATE COLLECTED - SAMPLE NUMBER	10-30-80 80-7127	10-30-80 80-7128	
pH Units Specific Cond. (umhos/cm @ 25° C)	7.2 1100	7.5 4000	
Milligrams per liter			
BOD COD NH ₃ as N NO ₃ +NO ₂ as N	6 37.8 0.22 0.98	>444 845 108 <	
Total P MBAS Total Sulfide TOC	0.37 0.06 33.0	1.0 0.07 302	
Total Cyanide Non-Filterable Residue (SS) Filterable Residue (TDS) Color Alkalinity as CaCO ₃	15452 684 4 25	24 2064 1000	
Fluoride Chloride Sulfate Hardness as CaCO3 (Ca, Mg, Fe,	0.25 42.1 159 465	0.54 355 29 718	
Zn, Mn) Potassium Sodium Calcium			
Magnesium Temperature	12°C	14°C	
Micrograms per liter			
Barium Cadmium Chromium	700 Dissolved 1.0 Dissolved 2 Dissolved	300 Total 0.2 Total 12 Total	
Copper Iron	11 Dissolved 400 Dissolved	1 Total 3200 Total	
Lead Selenium Manganese Hercury	3 Dissolved 5 Dissolved 600 Dissolved ∠0.1 Dissolved	∠1 Total ∠5 Total 500 Total ∠0.1 Total	
Nickel Zinc	1310 Dissolved	238 Total	
-Arsenic Silver	2 Dissolved ∠0.2 Dissolved	5 Total <0.1 Total	

MISSOURI DEPARTMENT OF NATURAL RESOURC. DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

NAME OF FACILITY	est Lake Landfil.	1		
SAMPLES COLLECTED BY	Randu Crawford	DATE(S)	10-30-80	
NOTE:				
SAMPLE DESCRIPTION	Boring #3	Boring #4	Boring #5	(Along St. Charles
DATE COLLECTED - SAMPLE NUMBER	10-30-80 80-7129	10-30-80 80-7130	10-31-80 80-7131	Rock Road)
pH Units Specific Cond. (umhos/cm @ 25° C)	7.0 1100	6.7	6.7 1200	·
Milligrams per liter		•		
			_	
BOD	7	17	9	
COD NU CO N	35.1 0.11	42.2 0.23	16.9 0.02	
NH ₃ as N NO ₂ +NO ₂ as N	0.22	0.06	0.36	
NO3+NO2 as N Total P	0.16	0.06	0.10	
MBAS T	0.07	0.06	0.15	•
Total Sulfide TOC	No Result*	No Result*	No Result*	
Total Cyanide				
Non-Filterable Residue (SS)	8496	7310	8 96	
Filterable Residue (TDS) Color	392 6.35	2040 ∠ 25	120 4 25	
Alkalinity as CaCO ₃	∠ 25	225		•
Fluoride	0.32	0.20	0.17	•
Chloride	16.4	10.2	14.3	
Sulfate	78	<i>37</i> °	141	
Hardness as CaCO ₃ (Ca, Mg, Fe,	5 85	747	<i>5</i> 77	
Zn, Mn) Potassium		•		
Sodium				
Calcium	ì	-		
Magnesium Temperature	15°C	15°C	18°C	
Micrograms per liter				
Barium, Dissolved Cadmium, Dissolved	500 0. 8	400	2 00 0. 9	
Chromium, Dissolved	5.6	1.3	<i>0.9</i> ∡	
Copper, Dissolved	21	7	4	
Iron, Dissolved	1200	1000	400	
Lead, Dissolved Selenium, Dissolved	4	2	4 3	
Selenium, Dissolved Manganese, Dissolved	3 1100	4400	30 0	
Mercury, Dissolved	∠0.1	< 0.1	∠0.1	
Nickel		- v		
_ Zinc, Dissolved	5 50	198	132	
- Arsenic, Dissolved	j	2	∠ 5	
Silver, pissolved *Instrument Failure	∠0.2	20.2	∠ 0.2	
LSP-69/5-5-80	•			

Method 624 Volatile Organics

			•
			RESULTS
	CAS No.	COMPOUND NAME	<u> ú2/1</u>
MANPLE DESCRIPTION:			
ATTLE DESCRIPTION:	107-02-8	Acrolein	<u> </u>
Westlake Landfill leachate discharge	107-13-1	Acrylonitrile	- NA
_to Fish Pot Creek	71-43-2	Benzene	26
,	74-83-9	Bromomethane	<27
	75-27-4	Bromodichloromethane	<3.2
	75-25-2	Bromoform	<2.8
ate Collected: 12-14-83	56-23-5	Carbon Tetrachloride	<3.1
•	108-90-7	Chlorobenzene	<2.4
Collected By: Virgil Wiesner	75-00-3	Chloroethane	<27
ffiliation: SLRO	110-75-8	2-Chloroethylvinyl ether	<8.3
	67 66 3	Chloroform	
Method:	67-66-3 74-87-3	Chloromethane	<u> <2.9</u>
EPA Method No. 624	124-48-1	Dibromochloromethane	<u> <24</u>
EFA Method No. 624	75-34-3	1, 1-Dichloroethane	
•	107-06-02	1,2-Dichloroethane	
•	107-00-02	1,2-bichiorde mane	<2.0
	75-35-4	1, I-Dichloroethene	<2.9
	540-59-9	trans-1,2-Dichloroethene	5.3
Remarks:	78-87-5	1,2-Dichloropropane	<1.5
Analyzed 1/5/84. Sample exceeded holding	10061-01-5	cis-1,3-Dichloropropene	NA_
time by 8 days.	10061-02-6	trans-1,3-Dichloropropene	
	100-41-4	Ethylbenzene	
·	75-09-2	Methylene chloride	 <2_6_ 15
	79-34-5	1, 1, 2, 2-Tetrachloroethane	
L - The recovery of a spike in the	127-18-4	Tetrachloroethene	<2.4
sample was not within the control	71-55-6	I, I, I-Trichloroethane	<3.2
limits.		.,.,.	
The New American	79-00-5	1,1,2-Trichloroethane	<u> </u>
A - Not Analyzed	79-01-6	Trichloroethene	<3.0
NR - No Result - see Remarks	75-69-4	Trichlorofluoromethane	NA_
A standard was see and a	108-88-3	Toluene	130
D - A standard was not run and a	75-01-4	Vinyl chloride	<24
measurable (near MDL) peak was not found at the expected retention time.	,		
I - Tentative Identification has been			
made through a library search. An		•	
authentic standard has not been run.			•
The est. conc. is based on response			
relative to an internal standard.			
Approved: Ame Kl	,		
James H. Long, Director			
Laboratory Services Program			
()	,	•	
istribution:		:	
ave Bedan, Waste Management Program			
Bill Price, Public Drinking Water Program	Page		of1_
	_	•	

Method 624 Volatile Organics

		•	n=c1= =
	CAS No.	COMPOUND NAME	RESULT úg/1
SAMPLE DESCRIPTION:	107-02-8	Acrolein	
	107-02-8	Acrylonitrile	NA NA
Fish Pot Creek below Sulphur Spring	71-43-2	Benzene	
Road Bridge 1000 feet	74-83-9	Bromomethane	<27
	75-27-4	Bromodichloromethane	<3.2
	75-25-2	Bromoform	<u><2.8</u>
Date Collected: 12-14-83	56-23-5	Carbon Tetrachloride	<3.1
Callagrad Bur. Wined Manner	108-90-7	Chlorobenzene	<2.4
Collected By: Virgil Wiesner	75-00-3	Chloroethane	<u> </u>
Affiliation: SLRO	110-75-8	2-Chloroethylvinyl ether	<u> <8.3</u>
_Me thod:	67-66-3	Chloroform	<2.9
	74-87-3	Chloromethane	<24
	124-48-1	Dibromochloromethane	<2.8
EPA Method No. 624	75-34-3	l, l-Dichloroethane	<u> <2.0.</u>
	107-06-02	1,2-Dichloroethane	<2.0
	75-35-4	1, 1-Dichloroethene	<2.9
	540-59-9	trans-1,2-Dichloroethene	<3.2
Renarks:	78-87-5	1,2-Dichloropropane	<u><1.5</u>
Analyzed 1/5/84. No detectable	10061-01-5	cis-1,3-Dichloropropene	NA
contamination was found. Sample	10061-02-6	trans-1,3-Dichloropropene	<2.5
exceeded holding time by 8 days.	100-41-4	Ethylbenzene	<2.6
-	75-09-2	Methylene chloride	<5.4
	79-34-5	1, 1, 2, 2-Tetrachloroethane	<2.3
CL - The recovery of a spike in the	127-18-4	Tetrachloroethene	<2.4
sample was not within the control	71-55-6	l, l, l-Trichloroethane	<3.2
limits.	79-00-5	1,1,2-Trichloroethane	<3.3
A - Not Analyzed	79-01-6	Trichloroethene	<3.0
NR - No Result - see Remarks	75-69-4	Trichlorofluoromethane	NA_
	108-88-3	Toluene	<u><6.5</u>
ID - A standard was not run and a	75-01-4	Vinyl chloride	<24
measurable (near MDL) peak was not found at the expected retention time			
· ·	1		
T - Tentative Identification has been			
made through a library search. An			•
authentic standard has not been run.		·	
The est. conc. is based on response relative to an interval standard.	The same of the sa		
retaine to an internal plantate.	1		

Page

pproved:

Distribution?

James H. Long, Director Laboratory Services Program

Dave Bedan, Waste Management Program Bill Price, Public Drinking Water Program

1.0f _1

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF ENVIRONMENTAL QUALITY LABORATORY SERVICES PROGRAM

Appendix A

115508

REPORT OF SAMPLE ANALYSIS LANDFILL MONITORING PROJECT

SAMPLES COLLECTED	BY Steve Bere	ndzen DAT	E(S) 6-16-81	
NOTE:	0804	0925	220	0810
SAMPLE DESCRIPTION	Well #34	Well #35	Well #38	Well #39
	1	·		6-17-81
DATE COLLECTED	6-16-81 81-7835	6-16-81 81-7836	6-16-81 81-7833	81-7834
SAMPLE NUMBER	61-7633	61-7630	01-7033	01-7034
pH Units	7.1	7.2	- 6.5	6.9
Specific Cond. (umhos/cm		•••		
@ 25° C)	600	730	620	660
Milligrams per liter		· ·		
CCD	56	95	No result	45
NH3 as N	0.12	1.42	0.90	0.28
$NO_3 + NO_2$ as N	0.05	< 0.05	0.09	0.05
Total Phosphorus	0.24	0.41	0.42	0.27
Filterable Residue (TDS)	613	740	602	782
Filterable Residue (1D5)	013	740	002	
Fluoride	0.1	0.5	0.2	0.2
C hloride	44	43	7.9	44
Sulfate	90	< 10	86	210
Hardness as CaCO3 (Ca,Mg)	430	630	480	530
Sodium	16	19	12	20
Calcium	99	170	120	130
Magnesium	44	50	44	50
and the control of th		J U .	44	
Micrograms per liter				
Arsenic	< 5	13	< 5	< 5
Barium	100	320	260	120
Boron	<100	< 100	590	< 100
Cadmium	9	8	< 2	6
Chromium .	< 20	< 20	< 20	< 20
Cobalt	< 10	< 10	< 10	< 10
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	√ ₹5	< 5	8
Copper	28,000	5,500	220	16,000
Iron	< 3			\$5
Lead		< 5	< 5	
Manganese	970	2000	430	670
Mercury	No result	No result	No result	Log Er
Selenium	< 5	< 5	< 5	< 5
Silver	< 1	ζī	₹1	< 1

EXHIBIT 14-I (Interim Report on the Proposed Ground Water Sampling Program for the Primary Phase of the Hydrogeologic Investigation, West Lake Landfill, St. Louis County, Missouri, October 1985 prepared by Burns and McDonnell, Kansas City, Missouri) will be produced at such time as it is located by Respondent.

EXHIBIT 14-I (Interim Report on the Proposed Ground Water Sampling Program for the Primary Phase of the Hydrogeologic Investigation, West Lake Landfill, St. Louis County, Missouri, October 1985 prepared by Burns and McDonnell, Kansas City, Missouri) will be produced at such time as it is located by Respondent.

EXHIBIT 14-J (Hydrogeologic Investigation - West Lake Landfill Preliminary Phase Report, dated January 1985 prepared by Burns and McDonnell, Kansas City, Missouri) will be produced at such time as it is located by Respondent.

EXHIBITS 18-A THROUGH 18-0000

MINUTES OF CORPORATE DIRECTORS' MEETINGS

Produced simultaneous with, and attached separately to, the 104(e) Response of William E. Whitaker are copies of minutes of corporate directors' meetings. Respondent hereby asserts a confidentiality claim with respect to these minutes, pursuant to §§104(e)(7)(E) and (F) of CERCLA, 42 U.S.C. §§9604(e)(7)(E) and (F), Section 3007(b) of RCRA, 42 U.S.C. §6927(b), and 40 C.F.R. 2.203(b). Following is a listing of all the minutes, together with the dates covered by each, respectively.

- 18-A: West Lake Ready Mix Company, Taussig Rd., St. Louis County Missouri, January 8, 1952
- 18-B: Minutes of the Meeting of the Board of Directors of the West Lake Ready Mix Company, Taussig Rd., St. Louis County Missouri, April 8, 1953
- 18-C: Minutes of Special Meeting of Directors of West Lake Ready Mix Company, December 30, 1953
- 18-D: Minutes of a Special Meeting of the Directors of West Lake Ready Mix Co., February 4, 1955
- 18-E: Minutes of Special Meeting of Board of Directors of West Lake Ready Mix Company, March 8, 1957
- 18-F: Minutes of a Special Meeting of The Directors of West Lake Ready-Mix Company, June 18, 1964
- 18-G: Minutes of a Special Meeting of The Directors of West Lake Ready-Mix Company, November 17, 1965
- 18-H: Minutes of Special Meeting of Directors of West Lake Quarry and Material Company, August 1, 1966
- 18-I: Minutes of Special Joint Meeting of The Board of Directors and Shareholders of West Lake Quarry and Material Company, June 30, 1971
- 18-J: Minutes of Special Joint Meeting of The Board of Directors and Shareholders of West Lake Ready Mix Company, June 30, 1971
- 18-K: Minutes of Special Meeting of Board of Directors of West Lake Quarry and Material Company, Inc., July 1, 1972
- 18-L: Minutes of Special Meeting of Board of Directors of West Lake Ready Mix Company, July 1, 1972

Minutes of Special Meeting of Board of Directors of West 18-M: Lake Quarry and Material Company, Inc., December 28, 1972 Minutes of Special Meeting of Board of Directors of West 18-N: Lake Ready Mix Company, Inc., December 28, 1972 18-0: Minutes of Special Meeting of Board of Directors of West Lake Quarry and Material Company, Inc., May 1, 1974 Minutes of Special Meeting of Board of Directors of West 18-P: Lake Ready Mix Company, May 1, 1974 18-Q: Minutes of Special Meeting of Board of Directors of West Lake Quarry and Material Company, Inc., March 18, 1975 Minutes of Special Meeting of Board of Directors of West 18-R: Lake Ready Mix Company, Inc., March 18, 1975 18-S: Minutes of Special Meeting of Board of Directors of West Lake Quarry and Material Company, Inc., March 16, 1976 Minutes of Special Meeting of Board of Directors of West 18-T: Lake Ready Mix Company, Inc., March 16, 1976 Minutes of Special Meeting of Board of Directors of West 18-U: Lake Quarry and Material Company, Inc., March 15, 1977 Minutes of Special Meeting of Board of Directors of West 18-V: Lake Ready Mix Company, Inc., March 15, 1977 Minutes of Special Meeting of Board of Directors of West 18-W: Lake Quarry and Material Company, Inc., September 14, 1977 Minutes, Monthly Meeting of The Board of Directors of 18-X: Westlake Quarry and Material Company, January 28, 1986 18-Y: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, March 25, 1986 Minutes, Monthly Meeting of the Board of Directors of 18-Z: Westlake Quarry and Material Company, April 29, 1986 18-AA: Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, June 24, 1986 Minutes, Monthly Meeting of the Board of Directors of 18-BB: Westlake Quarry and Material Company, July 29, 1986

18-CC:

Minutes, Monthly Meeting of the Board of Directors of

Westlake Quarry and Material Company, August 26, 1986

18-DD:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, September 23, 1986
18-EE:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, October 28, 1986
18-FF:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, November 25, 1986
18-GG:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, January 27, 1987
18-HH:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, February 24, 1987
18-II:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, March 26, 1987
18 - JJ:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, April 30, 1987
18-KK:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, June 2, 1987
18-LL:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, June 30, 1987
18-MM:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, August 5, 1987
18-NN:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, September 4, 1987
18-00:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, October 2, 1987
18-PP:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, October 2, 1987
18-QQ:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, November 24, 1987
18-RR:	Minutes, Monthly Meeting of the Board of Directors of Westlake Quarry and Material Company, December 30, 1987
18-SS:	Minutes, Monthly Meeting of the Board of Directors of West Lake Quarry and Material Company, January 28, 1988
18-TT:	Minutes, Monthly Meeting of the Board of Directors of West Lake Quarry and Material Company, March 4, 1988

- 18-UU: Unanimous Consent of Directors of West Lake Quarry and Material Company in Lieu of Annual Meeting of Board of Directors, March 16, 1988 18-VV: Unanimous Consent of Directors of West Lake Ready Mix Co. in Lieu of Annual Meeting of Board of Directors, March 16, 1988 Minutes, Monthly Meeting of the Board of Directors of 18-WW: West Lake Companies, April 8, 1988 18-XX: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, April 28, 1988 18-YY: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 2, 1988 18-ZZ: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, July 8, 1988 18-AAA: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, August 19, 1988 Minutes, Monthly Meeting of the Board of Directors of The 18-BBB: West Lake Companies, September 29, 1988 Minutes, Monthly Meeting of the Board of Directors of The 18-CCC: West Lake Companies, November 4, 1988 18-DDD: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, November 17, 1988 Minutes, Monthly Meeting of the Board of Directors of The 18-EEE: West Lake Companies, December 21, 1988 Minutes, Monthly Meeting of the Board of Directors of The 18-FFF: West Lake Companies, February 6, 1989 Minutes, Monthly Meeting of the Board of Directors of The 18-GGG: West Lake Companies, February 22, 1989 18-HHH: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 22, 1989
- 18-JJJ: Statement of Unanimous Written Consent of Directors of West Lake Quarry and Material Company in Lieu of Meeting of Board of Directors, May 25, 1989

West Lake Companies, April 26, 1989

18-III:

Minutes, Monthly Meeting of the Board of Directors of The

- 18-KKK: Statement of Unanimous Written Consent of Directors of West Lake Ready Mix Company in Lieu of Meeting of Board of Directors, May 25, 1989
- 18-LLL: Statement of Unanimous Written Consent of Directors of West Lake Transportation Company in Lieu of Meeting of Board of Directors, May 25, 1989
- 18-MMM: Statement of Unanimous Written Consent of Directors of Rock Road Industries, Inc. in Lieu of Meeting of Board of Directors, May 25, 1989
- 18-NNN: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, May 30, 1989
- 18-000: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 23, 1989
- 18-PPP: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, July 26, 1989
- 18-QQQ: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, September 8, 1989
- 18-RRR: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, September 22, 1989
- 18-SSS: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, October 25, 1989
- 18-TTT: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, December 8, 1989
- 18-UUU: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, January 2, 1990
- 18-VVV: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, January 25, 1990
- 18-WWW: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, February 28, 1990
- 18-XXX: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 28, 1990
- 18-YYY: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, April 20, 1990
- 18-ZZZ: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, May 29, 1990

- 18-AAAA: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 29, 1990
- 18-BBBB: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, August 14, 1990
- 18-CCCC: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, September 24, 1990
- 18-DDDD: Minutes, Special Meeting of the Board of Directors of The West Lake Companies, October 19, 1990
- 18-EEEE: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, October 31, 1990
- 18-FFFF: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, November 28, 1990
- 18-GGGG: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, December 20, 1990
- 18-HHHH: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, January 31, 1991
- 18-IIII: Certified Copy of Corporate Resolution of West Lake Quarry and Material Company, February 28, 1991
- 18-JJJJ: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 6, 1991
- 18-KKKK: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, March 27, 1991
- 18-LLLL: Minutes, Special Meeting of the Board of Directors of The West Lake Companies, April 22, 1991
- 18-MMMM: Minutes, Special Meeting of the Board of Directors of The West Lake Companies, April 23, 1991
- 18-NNNN: Certified Copy of Corporate Resolution of West Lake Quarry and Material Company, April 30, 1991
- 18-0000: Minutes, Monthly Meeting of the Board of Directors of The West Lake Companies, June 5, 1991

PHASE II INVESTIGATION FINAL REPORT

U.S. REAL ESTATE DIVISION FORD FINANCIAL SERVICES EARTH CHTY, MISSOURI

EDAMES & MOORE

D&M Job No. 19943-002-045 June 26, 1990

Exhibit 19-A

11701 BORMAN DRIVE, SUITE 340, ST. LOUIS, MISSOURI 63146 (314) 993-4599 FAX NO. (314) 993-4895

June 14, 1990

Mr. John Basilico United States Real Estate Ford Financial Group 13517 Lake Front Drive Earth City, MO 63045-1414

RE: Phase II Site Investigation

Earth City Property Adjacent to West Lake Landfill

Dames & Moore Job No.: 19943-002-045

Dear Mr. Basilico:

Enclosed for your information are two (2) copies of the Phase II Site Investigation final report for the above referenced property.

Should you have any questions or wish to discuss this report in any way, please do not hesitate to contact Ms. Linda Black or myself.

Very truly yours,

DAMES & MOORE
A Professional Limited Partnership

Gary F. Wajda, P.E.

Rartner (Ltd.)

Managing Principal

gfv/ken Enclosure

PHASE II INVESTIGATION REPORT

U.S. REAL ESTATE DIVISION FORD FINANCIAL SERVICES EARTH CITY, MISSOURI

TABLE OF CONTENTS

1.0	INTR	ODUCTION 1
	1.1	Executive Summary
	1.2	Project History Summary
٠	1.3	Scope of Work Summary 3
2.0	OVE	RLAND GAMMA SURVEY 3
	2.1	Field Investigation
	2.2	· · · · · · · · · · · · · · · · · · ·
3.0	SOIL	SAMPLING 5
	3.1	Field Investigation
	3.2	Investigation Results
4.0	SEDI	MENT SAMPLING
	4.1	Field Investigation
	4.2	Investigation Results
5.0	SOIL	BORINGS/DOWNHOLE GAMMA LOGGING
	5.1	Field Investigation
	5.2	Investigation Results
6.0	GRO	UNDWATER MONITORING
	6.1	Monitoring Well Isolation
	6.2	Sample Collection
	6.3	Investigative Results
7.0	CON	CLUSIONS
	7.1	Radiological Investigations
	7.2	Inorganic and Organic Chemical Investigation

TABLE OF CONTENTS

LIST OF TABLES

Table 1 -	Overland Gamma Radiation Survey Measurements
Table 2 -	Volumes & Preservatives - Soil & Sediment Samples
Table 3 -	Soil Samples - Organic & Inorganic Data Summary
Table 4 -	Soil Samples - Radiologic Data Summary
Table 5 -	Sediment Samples - Organic & Inorganic Data Summary
Table 6 -	Sediment Samples - Radiologic Data Summary
Table 7 -	Downhole Gamma Radiation Measurements
Table 8 -	Volumes and Preservative - Water Samples
Table 9 -	Water Samples Organic and Inorganic Data Summary
Table 10 -	Water Samples Radiological Data Summary
Table 11 -	Sample Reanalysis Data

APPENDICES

Appendix A - Certificates of Calibration Appendix B - Chain-of-Custody Records Appendix C - Laboratory Analytical Data

Appendix D - Soil Boring Logs

Appendix E - Well Construction Diagrams

Appendix F - Groundwater Field Measurements

1.0 INTRODUCTION

In April, 1990, Ford Financial Services Group, U.S. Real Estate authorized Dames & Moore to proceed with a Phase II Site Investigation to further document pre-transaction conditions at property adjacent to a proposed National Priorities List (NPL) site. This report presents a summary of the field techniques employed during this investigation and conclusions based upon analytical results from collected samples.

1.1 Executive Summary

The Phase II Site Investigation involved a more in-depth investigation of organic, inorganic, and radiological contamination of the Ford Property that is believed to be related to the adjacent West Lake Landfill. Upon review and evaluation of all information obtained from this investigation, several concluding remarks can be made which best summarize this effort.

First, the gamma radiation survey conducted on surface soils in areas north and west of the West Lake Landfill (i.e., areas which receive a large amount of surface runoff from the landfill) indicated that there is no significant surface radiological contamination present. Radiological contamination present within the landfill, therefore, does not appear to have contributed any significant contamination due to surface runoff to the 23 acres surveyed.

Second, in addition to the surface soil survey just described which required the use of a direct-reading meter, surface soil samples where also collected from 0-12 inches in depth from property locations adjacent to the landfill and submitted for more in depth chemical and radiological analysis. Soil samples were collected in locations where contamination was suspected from the Phase I effort and in locations where contamination might reasonably be expected. Although very low levels (parts per billion) of organic contamination were provided in the analytical report for the two soil sample composites, these values were actually below the analytical limit of detection and are, consequently, not significant. Of all the soil samples collected (a total of 20), only the samples collected from the two (2) locations where radiological contamination had been indicated from the Phase I investigation had radiological contamination (i.e., the biased samples). No further surface radiological contamination beyond these biased locations is evident based upon this information and the gamma radiation survey.

Third, sediment/soil samples were collected and analyzed from four (4) locations where chemical or radiological contamination might reasonably be expected to have migrated from the landfill via surface water. As with the soil samples, only low level organic chemical contamination was indicated which is likewise believed to be attributed to the sampling technique and not to actual soil contamination. Radiological contamination is also not evident in these samples.

Fourth, subsurface soil conditions were also surveyed radiologically down to groundwater in several locations to the north and west of the landfill. Gamma radiation and volatile organics were measured in soil borings down to groundwater using a GM-type survey meter and a photoionization detector, respectively. Neither radiological contamination nor chemical contamination of any type was evident.

Fifth, groundwater was sampled and analyzed chemically and radiologically by installing monitoring wells in the same soil borings that were mentioned previously. Low level (part per billion) concentrations of some organic chemicals were detected in several of the groundwater samples. Several of these, however, are believed to be attributable to background contamination from the laboratory, and as such, do not represent a significant environmental concern. Two semi-volatile BNAs (chrysene and Bis (2-ethylhexyl)phthalate) were, however, also detected in very low levels (1-27 ppb) in four (4) of the well samples. Other chemical contaminants tested for in the groundwater (i.e., metals, cyanide) were not present in sufficient concentration to represent a significant environmental concern. Although radiologically speaking there were conflicting results from the two laboratories used, there does not in any case appear to be significant groundwater contamination. The one parameter that was tested and found to be somewhat elevated in some of the water samples (gross alpha) is of secondary importance since the sum of the individual components that typically comprise this parameter failed to confirm the gross alpha totals.

With the exception of two (2) biased locations adjacent to the West Lake Landfill where radiological contamination is evident (B1 and B2), it is unlikely that the results provided from this investigation can be interpreted as evidence that the radioactive material resident in the West Lake Landfill has migrated to Earth City property.

1.2 Project History Summary

In December, 1989, Ford retained Dames & Moore to prepare an assessment of the radiologic conditions at their properties in Earth City, Missouri, as part of a pre-divestiture due diligence effort. The scope of the Phase I effort was primarily to respond to concerns raised by the proximity of the West Lake Landfill, located immediately to the east of the property under review (Figure 1). On October 23, 1989, the landfill was proposed for addition to the National Priorities List under CERCLA, due to improper acceptance during the early 1970's of radiologic materials primarily from the Department of Energy's Latty Avenue operations.

Upon completion of a review of available information, and a limited sampling effort, Dames & Moore concluded that the data suggests that significant off-site migration of radioactive contaminants from the landfill via groundwater has not occurred. However, it was recommended that surface contamination attributable to landfill runoff be further characterized.

This Phase II Investigation has been developed to document more extensively field conditions by means of additional soil and water sampling for an expanded set of parameters, believed to be more representative of potential landfill contents.

1.3 Scope of Work Summary

The services performed during this Phase II investigation included the following five elements:

- Overland Gamma Survey Gamma radiation levels were measured at one centimeter and one (1) meter above the ground surface to ascertain whether additional areas of surface radioactive contamination exist;
- o Surface Soil Sampling Discrete and composite soil samples were collected in the two known "hot spots", in random areas, and in one background location;
- o Sediment Sampling Discrete sediment samples were collected from drainage areas likely to be influenced by runoff from the landfill;
- o Soil Borings/Downhole Gamma Logging Seven soil borings were advanced to 15-25 feet depths. Cuttings were screened for organic vapors and for radiation levels. Gamma radiation levels were also measured and recorded inside the borehole, advancing in six-inch increments to the water table; and
- o Groundwater Sampling Monitoring wells were installed at each of the borings. Samples were collected for laboratory analysis for organic, inorganic, and radiologic parameters.

2.0 OVERLAND GAMMA SURVEY

Between April 9 and 13, 1990, Dames & Moore personnel conducted an overland gamma radiation survey of 23 acres adjacent to the landfill which had not previously been surveyed. These measurements would indicate areas, if any, where radiation levels were elevated above ambient background.

2.1 Field Investigation

The overland gamma survey covered the areas shown on Figure 2. The area to the north of the landfill, and to a lesser extent, along Old St. Charles Rock Road were surveyed to assess potential migration of radiologic materials via surface routes. Areas adjacent to the recently excavated drainage ditch/lake were surveyed to assess the levels of radiation in the material dredged from the ditch, which may have intercepted potentially contaminated groundwater.

The gamma radiation survey was set up using a 10 x 10 meter survey grid to maintain reproducibility and accuracy. Each section was first marked with stakes, using the S66 48'41" E line, road coordinates, and chain-link fence which delineates the landfill, as the three primary reference lines. Section grid lines were established 90 degrees from the reference lines at 10 meter intervals. Three grids were established - the largest encompassed the area north of the landfill and covered approximately eight (8) acres. The second was established to the west of Old St. Charles Rock Road in an area of disturbed soils recently excavated from a nearby drainage ditch/lake. The third was also established west of Old St. Charles Rock Road and paralleled nearly the entire Ford/West Lake common boundary over an area of soils excavated from the nearby drainage ditch/lake.

Two calibrated Bicron microrem radiation survey meters were used for radiation level measurements at each intersection of the grid at one centimeter and one meter above the ground surface. These instruments use a tissue-equivalent plastic scintillator as the detection medium to provide accurate dose rate information relative to biologic tissue. An instrument operability check, which included a battery, background and source check was performed daily prior to use and several times during use, to assure property instrument operation while performing the survey. Both survey instruments were calibrated by the manufacturer and certificates of calibration are attached as Appendix A.

2.2 <u>Investigation Results</u>

Gamma radiation levels measured during the survey of the property are tabulated in Table 1. A map of the grid points is attached as Figure 3. Background radiation measurements were recorded from several areas off-site and in ambient areas located on-site. The average background dose rate for the two instruments in these areas ranged from three (3) to six (6) microrem per hour which corresponds with levels identified by ORNL in a study titled "State Background Radiation Levels 1975-1979" (report #TM-7343) which gives levels for the East St. Louis area of between four (4) and eight(8) microrem per hour. All measurements made on the property represented actual instrument readings without background data subtraction. Raw data tabulated in Table 1, represent readings obtained at each survey point one meter and one centimeter above ground surface. The primary reference point for each grid is indicated on Table 1 and the site map (Figure 3) as point 0,0. All tables give the survey point locations

based on their position relative to the reference point within the data matrix.

The U.S. Environmental Protection Agency guidelines for site cleanup and management of residual uranium and thorium (40 CFR 192, Subparts B & E) require that the exposure rate measured at a distance of one meter above the ground surface be less than 20 microrems per hour above background. In the case of the present survey, results did not exceed twice the measured background rate in any of the areas surveyed.

Contaminants located within the West Lake Landfill did not appear to influence the surface gamma radiation readings over the 23 acres surveyed. Although some fluctuations were present in the data, elevated gamma radiation readings within three times the average background measurement are not considered to be of consequence unless a systematic increase is noted. Site-wide trends were not readily apparent from the collected data.

3.0 SOIL SAMPLING

Surface soil samples were collected at several locations to characterize existing soil conditions in areas of the site adjacent to the landfill where contamination is suspected, and where contamination might reasonably be expected.

3.1 Field Investigation

Two composite soil samples (COMP-1 and COMP-2) were collected from the areas indicated on Figure 4 (shown as C1 and C2). It is believed that the soils dredged from the ditch along Old St. Charles Rock Road has been spread over these areas. These soils were therefore sampled to indicate whether any contaminants may have settled out from surface waters carried in the ditch. Each samples was collected from six points in the area shown, and submitted for analysis for total petroleum hydrocarbons (TPH), semi-volatiles, pesticides, PCBs, herbicides, metals, and cyanide, as well as radiological parameters.

Six unbiased soil samples (UB1-UB6) were collected at the locations shown on Figure 4. These areas were distributed along the general perimeter of the landfill to provide information regarding existing soil conditions. Each sample was collected at 0-6 inch depths and submitted for radiological analysis.

Biased soil samples were collected at two locations (B1 and B2) as shown on figure 4, which were identified during Phase I as having elevated gamma radiation levels. Samples B1A, B1B, B2A, and B2B were collected at 0-6 inch depths. Samples B1C and B2C were collected at 6-12 inch depths. All six samples were analyzed for several radiological parameters.

Samples were collected manually using either a stainless steel trowel or a stainless steel hand auger. Sampling equipment was decontaminated with Alconox detergent wash and a distilled water rinse between each sample.

Samples requiring radiological analysis were placed in plastic bags provided by the laboratory. Organic and inorganic samples were placed in jars provided by the laboratory (Table 2). Organic and inorganic samples were placed in an iced cooler. All samples were shipped to the respective laboratories via overnight delivery accompanied by Dames & Moore chain-of-custody records (Appendix B).

3.2 Investigation Results

A summary of organic and inorganic data is presented in Table 3. For nearly all parameters, there are no indications that samples COMP1 and COMP2 vary significantly from the background sample BKG.

Exceptions of note are the results of analyses for semi-volatile compounds. No semi-volatiles are indicated in the background sample, however, two compounds were detected in COMP1 and six compounds were detected in COMP 2. The semi-volatile compounds detected in the composite samples have been attributed to the sampling technique, which involved mixing the composite inside a plastic zip-lock bag. The background sample was collected directly into sample jars without contact with a bag.

A summary of the radiological data for soil samples is presented in Tables 4A, 4B, 4C, and 4D. All values are reported in units of picocuries per gram of sample plus or minus the error associated with the analysis at a 95 percent confidence level (± 2 sigma). All soil samples were analyzed for gross alpha and gross beta content and the specific nuclides uranium-234, 235/236, 238; thorium-230,232; potassium-40; cesium-137 and radium-226, 228. Values reported as less than (<) a specific value, are considered below the analytical instrument's lower limit of detection. Table 4A shows that the analytical results reported for unbiased samples UB1 through UB6 are indistinguishable from the background sample collected at the same depth as well as background samples analyzed for the Phase I investigation. Biased samples collected in the two areas identified as above background in the Phase I investigation, show, as expected, elevated gross alpha and gross beta.

For area 1 (Table 4B) gross alpha and gross beta for biased samples are elevated by factors of 55 and 10.6 respectively, while for Area 2 (Table 4C) levels are elevated by factors of 200 and 31, respectively. Similarly, elevated levels of uranium-234 and 238 are reported at 6.5 and 6 times background (Table 4B) and factors of 13.3 and 8.1, respectively (Table 4C). Thorium-230 values in sample B1A and B1B average over 400 times background, while B2A and B2B average over 900 times background. Thorium-232 however averaged only 3 times and

6 times background for areas 1 and 2, respectively. Ra-226 concentrations in the biased soil samples analyzed from areas 1 and 2 averaged 31 and 34 times background respectively. The above results refer only to the data reported for the 0-6" sample depth. The reported concentrations for the above mentioned nuclides in the 6-12" depth are equally elevated for the area 1 sample but are somewhat lower for the area 2 sample.

Composite soil sample results reported in Table 4D are indistinguishable from background.

4.0 SEDIMENT SAMPLING

Sediment samples were collected at four locations at the site to characterize existing conditions in areas where contamination might reasonably be expected to have migrated via surface water.

4.1 Field Investigation

Four sediment samples (S1-S4) were collected at the locations shown on Figure 5. Samples S1 and S2 were collected from the bottom of the drainage ditch which runs along Old St. Charles Rock Road. These samples were analyzed for several radiological parameters.

Sample S3 was collected from the bottom of a ponded area near St. Charles Rock Road. Sample S4 was collected from beneath the outlet of a surface water drain which originates at the base of the landfill berm, and emerges from the embankment of Old St. Charles Rock Road. Both samples were analyzed for organic and inorganic as well as radiological parameters.

Samples were collected using either a stainless steel trowel or a stainless steel hand auger. Sampling equipment was decontaminated with Alconox detergent wash and a distilled water rinse between each sample.

Radiological samples were placed in plastic bags provided by the laboratory. Organic and inorganic samples were placed in jars provided by the laboratory (Table 2). Organic and inorganic samples were placed in an iced cooler. All samples were shipped to the respective laboratories via overnight delivery accompanied by Dames & Moore chain-of-custody records (Appendix B).

4.2 Investigation Results

A summary of organic and inorganic data is presented in Table 5, as a comparison with background soil sample BKG. For nearly all parameters, there are no indications that samples S3 and S4 vary significantly from the background sample. Mercury was detected only in sample S4, at 0.18 ppm only slightly above the reported detection limits.

- Semi-volatile analytical results are similar to the soil samples, where several compounds were detected. Again, this is attributed to the sampling technique which involved mixing of the composite sample inside of a plastic zip-lock bag. The background sample was collected directly into sample jars without contact with a bag.

A summary of the radiological data is presented in Table 6. Review of this table shows that, for the radiological parameters specified, all data is indistinguishable from background except for the gross alpha value of sample S4 which is reported as 6.6 times background. Upon reanalysis of this sample by ITC, however, a much lower gross alpha value was obtained. For reasons explained in Section 7.1.3 of this report, the second analysis, which indicated a gross alpha level of 19.3 ± 8.6 , is considered to be more valid.

5.0 SOIL BORINGS/DOWNHOLE GAMMA LOGGING

Soil borings were advanced at seven (7) locations at the site to observe and assess subsurface soil conditions to the depth of the groundwater table. Additionally, gamma radiation was measured inside each borehole to provide vertical profiles of radiation levels.

5.1 Field Investigation

Soil borings were advanced to the groundwater table at seven locations shown on Figure 6, using an ATV-mounted hollow-stem auger drill rig. Samples were retrieved using a 3-inch diameter continuous sampler. Downhole drilling equipment was decontaminated between borings by pressure washing with water.

Geological observations made of the retrieved soils were maintained on Soil Boring Logs presented in Appendix D. Retrieved soils were field screened for VOCs with a photo-ionization detector, and for radiation levels with a G-M type survey meter.

Gamma radiation levels were measured inside the auger stem using an Eberline ESP-2 ratemeter and shielded SPA-3 scintillation detector. The detector was advanced in six-inch increments to depths approaching groundwater. Gamma logging measurements are shown in Tables 7-101 through 7-107, with graphical presentations in Figures 7-101 through 7-107.

5.2 Investigation Results

Borings depths ranged from 15 to 25 feet depending on the depth to groundwater. Soil types varied from silty to sandy silt, typically becoming coarser with depth. Some stiff silt or clay was noted. No volatile compounds were detected at any depth in any boring. Radiation levels were consistent with background levels.

All gamma logging data was consistent with background levels.

6.0 GROUNDWATER MONITORING

Groundwater monitoring wells were installed in each of the seven (7) soil borings at the locations shown on Figure 6. Well construction details are described in Section 6.1 and diagramed in Appendix E. Ten samples were collected for laboratory analysis according to the techniques discussed in Section 6.2. Analytical results are discussed in Section 6.3.

6.1 Monitoring Well Installation

As described in Section 5.0, soil borings were advanced by hollow stem auger. Upon completion of each boring, a 10-foot length of 2-inch diameter 0.010 slotted PVC well screen was placed to the bottom of the boring. PVC riser pipe was extended above the ground surface. A sand filter-pack was placed about the well screen as the auger flights were gradually removed from the borehole, typically to 2-feet above the top of the screened interval. A 1.5 - 2 feet thick bentonite pellet seal was placed above the sand pack. In wells MW101 and MW102, a cement slurry with a bentonite additive was placed from the top of the seal to a few feet below ground surface. At all wells, a cement-aggregate mixture was placed to the ground surface to secure the steel well protector, and to form a small concrete pad to deflect surface water away from the well. The PVC riser was fitted with a PVC screw cap and a padlock was placed on the steel protector. Well construction diagrams are shown in Appendix E.

Efforts by drilling contractor Brotcke to develop MW104 on April 12 using a tank of compressed nitrogen to drive an air-lift system were not successful. On Friday, April 13, 1990, personnel returned to develop the wells using an air compressor to drive water from the well. Purging efforts were continued for 30 minutes at each of the four wells (MW101, MW102, MW103, and MW104). The three remaining wells were not accessible due to wet ground conditions, and were developed by bailing.

6.2 Sample Collection

Groundwater sampling was conducted by Dames & Moore personnel on April 17 and 18, 1990. The following procedure was used at each well.

The depth to water from the top of the PVC casing was recorded to the nearest 1/16" using a chalked steel-tape. Standing water was purged from the well using a disposable polyethylene bailer (Voss Technologies). After removing one well volume, field measurements of temperature, pH and specific conductivity were made using a calibrated Hydac meter (Cambridge Scientific Industries) outfitted with an Orion pH probe. Field measurements were taken following each subsequent well-volume purged until three successive sets of measurements fell within the following ranges:

Temperature:

+/- 0.5° C

pH:

+/- 0.1 pH unit

Conductivity:

+/- micromhos

Typically, four (4) or five (5) well volumes were sufficient to accomplish stabilization. Field measurements are summarized in Appendix F. Based on contaminant levels during soil boring activities, purged water was discharged to the ground surface.

Upon stabilization, water samples were collected for laboratory analysis. Table 8 shows the volumes collected and preservations used to constitute one sample.

Samples were shipped via Federal Express to the appropriate laboratories for analysis (MW109 was hand delivered to Envirodyne), under Dames & Moore chain-of-custody procedures (Appendix B). Organic and inorganic samples were shipped in iced coolers. Each day, all VOA sample vials were placed in the same cooler, and were accompanied during shipment by trip blanks (TR-1 and TR-2).

6.3 <u>Investigative Results</u>

Data from organic and inorganic analyses are summarized in Table 9. Data packages from Southwest Laboratories and Envirodyne Engineers are provided in Appendix C. Data from the radiological analyses are summarized in Table 10. Data packages from ITC and CEP are provided in Appendix B.

A review of the organic and inorganic data indicated that pesticides, PCBs, herbicides, and cyanide were not detected. Several VOCs were identified near or below detection levels. Methylene chloride was detected at low levels (1-26 ppb) in all samples analyzed by Southwest. Similarly, acetone was detected (3-17 ppb) in most samples. Both compounds were detected in

the Southwest QA/QC method blank, and are frequent laboratory contaminants. The absence of these compounds in the Envirodyne analysis of MW109 (duplicate of both MW102 and MW108), reinforces the interpretation that the methylene chloride and acetone results are not accurate. Low levels of 1-1 dichloroethane are indicated in well MW102 and MW109 (3 ppb and 6 ppb, respectively). Toluene, ethyl benzene, and xylene were indicated in well MW103 in low levels also.

Two BNA (binuclear aromatic) compounds, chrysene and bis (2-ethylhexyl) phthalate, were also indicated in low levels in four (4) of the monitoring wells. Bis (2-ethylhexyl) phthalate was present in MW102, MW105, MW106, and MW109D while chrysene was present only in MW102.

Several metals were detected at low levels as well. Copper and zinc were consistently indicated in samples analyzed by Southwest. Antimony and nickel were also indicated in approximately half of the samples by Southwest. EEI/TCT reported the presence of arsenic, mercury, selenium, and silver in the two samples which they had analyzed (MW109 and MW109D). While there is a wide disparity in the metals results presented by the two laboratories, none of the actual reported quantities are at significant levels to be of concern.

Results of radiological analyses for groundwater samples collected during the Phase II investigation are reported in Tables 10A through 10D. Due to the propensity of groundwater samples collected from wells to contain filterable soil particulates which can skew results, all samples were analyzed as raw unfiltered water and as filtered water using a 0.45 micron filter medium. All results are reported as picocuries per liter of sample plus or minus the 2 sigma associated error. Numbers reported as less than (<) the reported value are below the limit of detectability for the given nuclide and analytical method. All results reported for filtered samples are indistinguishable from background data as represented by the off-site well water results of Table 2 in the Phase I report. Further, the filtered data would easily meet all existing radiological limits established for drinking water by the EPA (40 CFR 141). Of the unfiltered results four samples (MW-103U, MW-105U, MW-106U, and MW-107U) would not meet the EPA gross alpha criteria of 15 pCi/l for drinking water, but would meet all other established limits. However, since raw unfiltered groundwater would not be acceptable as drinking water, this comparison serves no purpose.

7.0 CONCLUSIONS

7.1 Radiological Investigations

7.1.1 Overland Gamma Survey

The results of the overland gamma survey discussed in Section 2 of this report clearly show that all areas surveyed were indistinguishable from ambient radiation levels associated with

nearby off-site locations. This conclusion is further supported by the results of the unbiased and composite soil sample analyses which were also indistinguishable from background radionuclide concentrations for the Phase II investigation area.

7.1.2 Soil

As discussed above, all unbiased and composite soil samples collected randomly within the 23 acres area of investigation, were found to have radionuclide concentrations similar to those measured for samples representing ambient (background) conditions collected for the present study, and those collected as background samples for the Phase I investigation. With regard to the two biased samples (B1 and B2) where contamination is evident, refer to Section 7.1.5 for details.

7.1.3 Sediment

Comparison of sediment samples to background soil samples collected for Phase I and II shows that all sediment results reported are less than or equal to the corresponding background concentration with the exception of the gross alpha result reported for sample S4. This sample was subjected to reanalysis of only the gross alpha parameter by ITC and the result reported to Dames & Moore, shown in Table 11, was 19.3 ± 8.6 . The original S4 gross alpha value was not confirmed by the reanalysis. This makes the initial analytical result a highly suspect data point, in that, several of the individual nuclides analyzed are alpha emitters, namely U-234, 235/236, 238, thorium-230 and 232 and radium-226. These nuclides are by far the most abundant alpha emitters in nature and therefore their sum should represent the majority of the gross alpha activity present. Because the sum of the individual nuclides is only 7.2 pCi/g, and the analytical techniques used to measure the individual nuclides is more precise than the gross alpha measurement, especially for a medium such as soil, the gross alpha measurement must be considered of secondary importance. Further, naturally occurring nuclides which are decay products of the marker nuclides may add to the gross alpha concentration, but are considered to be in equilibrium with their parent nuclide and therefore would not add significantly to the above calculated alpha contributions of the individual nuclides.

7.1.4 Groundwater

As discussed in Section 6.3, groundwater samples were analyzed as unfiltered and filtered to provide information on the quantity of filterable, and therefore undissolved particulates, resident in the samples. All results reported in Tables 10A through 10D for filtered samples easily meet EPA drinking water standards for gross alpha (15 pCi/l), gross beta (50 pCi/l) and radium-226 + 228 of 5 pCi/l. Further, all unfiltered samples meet these criteria except for the

gross alpha values reported for sample MW103-U, 17.2; MW105-U, 16.9; MW106-U, 101; and MW107-U, 202 pCi/l. The gross alpha values reported for these unfiltered samples are also of secondary importance since the sum of the individual nuclide concentrations fail to confirm the gross alpha values (see Section 7.1.3).

Groundwater sample MW102 was also subjected to quality assurance checks having a sample duplicate analyzed and a sample split analyzed by an independent laboratory. The results of both tests confirm the results of the original analysis as reported by IT Corporation. Most values for all tests were reported as below the limit of detection.

7.1.5 Biased Soil Samples

To provide additional characterization of the two limited hot spot areas identified during the Phase I study, the survey team was directed to resurvey the original areas, reidentify the location providing the highest gamma radiation level and remove 2-6" soil samples to a total depth of 12" to provide preliminary characterization of the nuclides present. These data are reported in Tables 4B and 4C.

For Area 1 (Tables 4B) the major nuclides identified as significantly above background are Th-230, Ra-226, U-234, and U-238. These results are confirmed in the sample duplicate analyzed by ITC and in the sample split analyzed by CEP except for Th-230. The discrepancy in the results is due to the differences in analytical techniques used by the two laboratories. Selected analytical results reported for original samples in Table 4B were reanalyzed with results shown in Table II. The reanalysis confirmed the original test results.

For Area 2 (Table 4C), the analytical parameters and major nuclides identified as present in concentrations more than 3 times background were gross alpha, gross beta, Th-230, U-234, U-238, and Ra-226.

Again for sample B2A, as for B1A, the duplicate of the original sample analyzed by ITC confirmed the initial results. The split sample with CEP again did not identify Th-230 in similar quantities, nor were gross alpha and gross beta results reported by CEP similar to the ITC data. Both laboratory technique and measurement capability differences are responsible for these discrepancies. Regardless of the CEP results, any regulatory bodies which would govern clean-up of the area would consider the highest reported results for regulatory purposes and therefore the CEP data splits would become meaningless. Further, this round of soil sampling would only serve to establish the highest potential concentration of nuclides in the area based on surface gamma radiation results. Further area characterization would be required to determine the vertical and horizontal extent of the contamination before clean-up activities could proceed. Due to the elevated levels of uranium-234 and 238 as well as radius-226 in these biased samples it is likely that this material originated from the West Lake Landfill property and found its way

to the present location via surface water erosion.

7.2 Inorganic and Organic Chemical Investigation

During the course of the Phase II investigation of the Earth City property, several different classes of both organic and inorganic contaminants were tested for in adjacent surface soils, groundwater, and drainage ditch bottom sediment. Organic contaminants tested for included total petroleum hydrocarbons (TPH), semi-volatile organics, pesticides, PCBs, herbicides, and volatile organics (VOCs). Inorganic contaminants tested for included metals and cyanide.

7.2.1 TPH

Surface soil composite samples (2) collected from areas adjacent to the West Lake Landfill had TPH levels below background. Sediment samples (2) collected from the bottom of a ponded area near the St. Charles Rock Road and from beneath the outlet of a landfill surface water drain, likewise had TPH levels below background.

7.2.2 Semi-volatiles

Low level concentrations (10-50 ppb) of several semi-volatile organic compounds were detected in both surface composite soil samples. Their presence is attributed to the sampling technique, which involved mixing the composite inside a plastic zip-lock bag. Plastic bags of this type often contain residual low level semi-volatiles. The sediment samples likewise contained low level semi-volatiles (10-19 ppb) which can be attributed to sampling technique.

Two semi-volatile BNAs, chrysene and bis (2-ethylhexyl)phthalate were detected in levels near or below detection limits in one and three monitoring wells, respectively, and do not represent a significant environmental concern.

7.2.3 Pesticides, PCBs, Herbicides, Cyanide

There were no detectable levels of any of these contaminants in any of the three sampling media.

7.2.4 VOCs

Volatile organics were tested for only in the eleven (11) groundwater samples. Two (2) VOCs, methylene chloride and acetone, were present in low concentrations in virtually all groundwater samples tested. These samples were analyzed by Southwest Laboratory and both of these VOC components, which are frequent laboratory contaminants, were detected in Southwest's QA/QC method blank. Consequently, this provides further evidence that the results for these contaminants are due to background contamination from the laboratory environment and as such, are not valid.

7.2.5 Metals

For both the soil sample composites (2) and the sediment samples (2), all metals detected do not vary significantly from background levels. Groundwater samples were analyzed by two separate laboratories: Southwest Laboratory and EEI/TCT. Low concentrations of copper, zinc, antimony, and nickel were detected by Southwest while EEI/TCT detected very low levels of arsenic, mercury, selenium, and silver. None of the levels detected represent a significant environmental concern.

SUMMARY OF GAMMA RADIATION FIELD MEASUREMENTS
FOR FORD, EARTH CITY RADIOLOGICAL SURVEY
EARTH CITY, MISSOURI

NORTHERN GRID

SURVEY LOCATIONS (READINGS ARE IN MICROREM/HOUR AT 1 METER, AND 1 CM ABOVE GROUND SURFACE)

						_															1											_	1				74	· · ·			-	
(E&W)	MO M	11	WZ	W3	W4	W5	W6	W7	8W	W9	סוע	Wll	W12	W13	W14	W15	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30	W31 W	52 W33	W34	W35	W36	W37	W 38	W39	W40	W41	W42
*	****	***	****	****	****	****	****	****	****	****	****	****	****	***	****	****	****	****	****	****	***	****	****	****	****	****	****	****	*****	****	****	****	****	*****	****	****	****	****	****	****	****	***
(N&S)	1	1	1		1	1	1	Ĭ	[1	1	[1	1	1	1	- 1	1	1	1	· 1	1	1	. 1	- 1	1	- 1	1	1	- 1			1 -	- 1	-31	1.05	100	1	1	. ľ	i,
NO 5	,6 6	6,6	7,7	5,5	5,6	6,6	7,7	7,7	6,6	6,7	5,5	5,6	8,8	6,7	6,6	7,6	7,7	6,7	8,8	7,7	6,7	6,6	7,7	5,5	6,7	7,7	6,7	6,7	6,7	7,7	6,7	6,6 6	,7 6,7	5,5	6,6	6,7	6,7	6,6	6,5	5,7	6,7	7,6
N1 5	,5 7	7,6	7,7	5,6	6,6	7,6	6,6	7,7	8,7	7,6	7,7	7,6	6,6	6,7	6,6	6,7	7,6	7,6	6,6	6,5	6,6	7,7	8,8	7,7	7,8	7,6	5,7	6,7	7,8	7,6	7,6	7,7 6	6 5,7	7,7	6,7	6,5	8,8	7,6	7,6	7,6	6,7	5,5
N2 7	,7 5	,5	6,7	6,7	7,7	6,6	7,7	8,8	8,8	8,8	6,6	8,7	6,7	7,7	8,8	6,7	7,8	7,6	7,8	6,7	8,8	6,6	8,8	5,5	7,7	6,6	6,7	8,7	7,7	6,6	7,7	7,6 5	6,5	8,7	6,6	6,6	6,7	8,8	6,7	5,5	6,7	7,6
N3 5	,6 5	,6	7,6	5,5	6,6	5,6	6,7	7,7	-7,7	7,7	7,7	6,6	7,7	6,6	7,7	7,7	6,7	7,7	8,8	6,7	6,8	6,7	7,7	7,8	7,8	7,6	6,7	7,7	5,6	7,8	6,7	6,5 6	,5 6,7	6,7	5,6	7,6	5,6	6,6	7,7	5,6	6/5	7,7
N4 S	/B 5	,5	6,6	5,5	7,7	6,7	7,6	6,7	7,6	5,7	6,6	7,8	7,8	6,7	7,8	7,7	6,6	6,5	7,7	6,5	7.7	7,8	7,7	5,5	7,8	7,8	7,7	8,7	7,6	6,7	5,5	8,7 7	, 6 7,7	7,6	7,7	6,5	6,6	6,7	6,5	5,5	5/,5	7,7
и5	s	/B	5,6	6,5	5,6	5,5	7,6	6,7	5,4	6,5	6,7	8,7	6,6	7,7	7,7	6,6	8,8	6,7	6,6	7,7	7,7	6,6	7,7	7,7	6,7	5,5	7,6	8,8	7,7	7,7	6,6	6,6 6	6,5	7,6	6,6	5,5	6,5	7,8	7,6	6,6	5,5	5,6
N6	1	- 1	6,6	5,5	5,5	5,5	6,6	5,8	6,6	6,5	7,8	7,7	7,7	6,6	7,8	6,5	5,5	6,5	5,6	8,8	7.7	7,7	7,8	6,7	7,7	7,7	7,6	6,6	7,6	6,5	6,6	7,6 7	,7 5,5	6,6	7,7	7,6	7,7	7,7	6,7	7,7	6.7	6,5
N7	1	- [S/B	5,5	5,5	5,5	5,5	5,5	6,7	6,8	8,8	7,6	6,7	6,6	6,7	8,7	6,6	7,6	7,7	5,7	5,6	7,7	7,8	7,7	7,7	6,7	6,6	7,6	7,6	7,7	7,7	7,7 6	6 7,7	5,5	8,7	7,7	7,6	7,7	7,7	6,5	/5,5	5,5
N8	j	Ì	İ	5,5	6,5	5,5	5,6	6,7	5,5	5,5	5,6	6,7	7,7	6,6	7,7	7,7	6,6	7,7	6,7	7,8	5,5	8,6	6,6	6,7	6,5	8,7	7,7	7,6	7,7	7,7			,5 7,7						6,6	6,6	6,5	5,6
N9		- 1	ļ	5,5	6,6	5,5	5,5	5,5	5,6	6,6	6,6	6,5	6,6	5,6	7,7	8,7	5,6	6,7	6,7	7,6	5,6	5,6	7,7	5,6	5,5	6,6	7,7	6,6	7,6	6,5			6,6							5,6	-,-,	5,5
N10	Ì	İ	ĺ	5,5	6,5	5,5	4,5	5,5	5,5		7,6			5,6			5,6																6 6,7						5,5	5,5	7,6	5,5
N11	j	j	Ì	S/B S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/8	S/B	S/B	S/B S	/B S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B	S/B											

^{*} S/B = Survey Boundary

SUMMARY OF GAMMA RADIATION FIELD MEASUREMENTS FOR FORD, EARTH CITY RADIOLOGICAL SURVEY EARTH CITY, MISSOURI

NORTHWEST GRID

MICROREM/HOUR AT 1 METER, AND 1 CM ABOVE GROUND SURFACE

(E&W)	WO	W12	W25	W 50	W 60	W70	W80	W 90	
****	*****	******	*******	****	*****	****	****	***	**
(N&S)									
\$17	PHASE I		LAGOON	PHASE	SURVEY	6,5	6,6	5,5	S/B
S16	ARI	EA	LAGOON	AR	EA	5,5	7,7	6,6	S/B
S15	•		LAGOON			6,6	6,6	5,7	S/B
\$14			LAGOON			6,7	5,5	6,6	S/B
S13			LAGOON			6,6	6,5	5,5	S/B
\$12			LAGOON	i.	<u> </u>	6,6	6,6	5,6	S/B
S11			LAGOON			5,5	7,7	5,5	S/B
S10			LAGOON			5,5	6,6	5,5	S/8
S9			LAGOON			5,5	6,6	6,7	S/B
S8			LAGOON			6,6	6,6	5,6	S/B
S7			LAGOON			7,6	6,6	6,7	S/B
` \$6			LAGOON		1	6,7	6,6	6,6	S/B
S 5			LAGOON			7,8	7,6	6,6	S/B
S4]	LAGOON]· :	7,6	7,7	6,7	S/B
S3		l i	LAGOON		j .	5,6	7,7	5,6	S/B
S2	!		LAGOON			6,5	7,7	5,5	S/B
S1		i i	LAGOON		1	7,6	7,6	7,7	S/B
20		1 1				5,6	6,5	6,7	S/B
NO	5,6	6,7		7,6	6,5	8,6	6,7	S/B	
N1	5,6	7,6	LAGOON	6,6	6,5	7,6	6,6	\$/B	
N2	5,5	7,7	LAGOON	7,7	7,7	7,7	6,7	\$/B	
N3	5,6	6,7	LAGOON	5,7	6,7	7,6	7,6	S/B	
N4	5,7	7,7	LAGOON	6,6	5,5	6,6	6,7	\$/B	
N5	6,6	6,8	LAGOON	6,5	6,5	6,5	7,8	S/B	ĺ
N6.	6,5	8,6	LAGOON	7,7	5,5	7,7	5,5	S/B	ĺ
N7	6,6	6,6	LAGOON	7,7	6,6	6,8	6,6	S/B	ł
N8	6,5	7,8	LAGOON	6,6	6,7	7,6	5,6	\$/8	
- N9	5,5	6,6	LAGOON	7,7	7,7	6,6	6,5	S/B	
N10	6,7	8,7	LAGOON	7,7	6,5	7,7	5,6	S/B	
N11	7,7	7,7	LAGOON	5,6	6,6	7,6	7,7	S/B	i
N12	6,7	7,7	LAGOON	5,5	7,8	5,5	7,8	S/B	}
N13	5,6	6,7	LAGOON	5,5	6,7	6,6	5,5	S/B	1
N14	6,6	8,6	LAGOON	7,7	7,7	7,6	6,6	S/B	l
	S/B	S/B	•	S/B	S/B	S/B	S/B	•	•

SUMMARY OF GAMMA RADIATION FIELD MEASUREMENTS FOR FORD, EARTH CITY RADIOLOGICAL SURVEY EARTH CITY, MISSOURI

WESTERN GRID

MICROREM/HOUR AT 1 METER, AND 1 CM ABOVE GROUND SURFACE

(NRS) NO 5,5 6,5 LAGOON 5,5 7,6 S/B N1 5,5 6,5 LAGOON 5,5 7,6 S/B N3 6,6 6,5 LAGOON 5,5 7,6 S/B N4 6,6 6,6 LAGOON 5,5 7,6 S/B N5 5,5 7,6 LAGOON 5,5 7,6 S/B N6 6,5 6,5 LAGOON 5,5 7,6 S/B N7 5,5 5,5 LAGOON 5,5 7,6 S/B N8 5,6 6,5 LAGOON 5,5 7,6 S/B N8 5,6 6,5 LAGOON 5,5 7,6 S/B N9 5,5 7,6 LAGOON 5,5 7,6 S/B N9 5,5 7,6 LAGOON 5,5 7,7 8,8 8,7 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N10 5,5 6,6 LAGOON 7,7 7,6 S/B N10 5,5 6,6 LAGOON 7,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N12 5,5 6,6 LAGOON 7,7 5,5 S/B N14 4,4 7,7 LAGOON 5,6 6,7 S/B N15 5,6 7,6 LAGOON 5,6 7,6 S/B N16 6,6 6,5 LAGOON 7,7 5,5 S/B N17 6,5 6,6 LAGOON 7,7 5,5 S/B N18 6,6 7,6 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,6 7,6 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 7,6 5,6 S/B N22 5,5 6,6 LAGOON 5,5 7,7 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 LAGOON 7,6 5,6 S/B N21 5,6 6,6 LAGOON 7,6 5,6 S/B N22 5,5 6,6 LAGOON 7,6 5,6 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 6,5 LAGOON 7,6 5,6 S/B N25 5,5 LAGOON 7,6 5,6 S/B N26 6,5 LAGOON 7,6 5,6 S/B N27 5,5 7,7 LAGOON 5,5 6,7 S/B N28 4,4 6,6 LAGOON 7,6 5,6 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 5,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 6,7 7,7 S/B N36 4,4 6,6 LAGOON 7,6 7,6 S/B N37 5,5 5,5 LAGOON 6,6 6,7 7,7 S/B N38 4,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N30 6,5 6,5 LAGOON 6,6 6,7 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 5,5 LAGOON 6,6 6,7 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 7,7 S/B N38 5,5 7,6 LAGOON 6,6 6,7 7,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 7,7 5,5 S/B N39 5,5 6,6 LAGOON 7,7 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 7,7 5,5 S/B N40 6,5 6,5 LAGOON 7,7 7,7 5,6 S/B N50 5,5 6,6 LAGOON 7,7 7,7 6							
NO 5,5 6,5 LAGOON 5,5 7,6 S/B N1 5,5 6,5 LAGOON 6,7 6,5 S/B N3 6,6 6,5 LAGOON 7,6 7,7 S/B N4 6,6 6,5 LAGOON 7,6 7,7 S/B N4 6,6 6,5 LAGOON 5,5 5,5 S/B N5 5,5 7,6 LAGOON 5,5 5,5 S/B N6 6,5 6,5 LAGOON 7,6 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N10 5,5 6,6 LAGOON 7,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N12 5,5 6,6 LAGOON 5,7 7,8 S/B N13 4,5 6,6 LAGOON 5,7 5,5 S/B N14 4,4 7,7 LAGOON 5,6 6,7 S/B N15 5,6 7,6 LAGOON 5,6 5,5 S/B N16 6,6 6,5 LAGOON 5,6 5,5 S/B N17 6,5 6,6 LAGOON 5,6 5,5 S/B N18 6,6 7,6 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,6 7,6 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 7,6 5,6 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 5,5 LAGOON 5,5 6,7 S/B N26 6,5 LAGOON 5,5 6,7 S/B N27 5,5 7,7 LAGOON 5,5 6,7 S/B N28 4,4 6,6 LAGOON 7,6 5,6 S/B N29 4,5 5,5 LAGOON 7,6 5,5 S/B N31 5,5 6,6 LAGOON 7,6 5,5 S/B N32 5,6 6,5 LAGOON 5,5 6,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,6 5,5 S/B N35 4,4 6,6 LAGOON 7,6 7,6 S/B N36 5,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 7,6 7,6 S/B N39 5,4 6,6 LAGOON 7,6 5,5 S/B N31 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,6 7,6 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 7,7 LAGOON 6,6 6,7 S/B N37 5,5 7,6 LAGOON 7,6 7,6 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N36 4,4 5,5 LAGOON 7,6 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N30 6,5 6,5 LAGOON 7,7 5,5 S/B N31 5,5 6,6 LAGOON 7,7 5,5 S/B N32 6,5 7,7 LAGOON 6,6 6,6 6,7 S/B N33 6,5 7,6 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 6,5 LAGOON 7,7 5,5 S/B N36 6,5 LAGOON 7,7 5,5 S/B N37 6,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,6 S/B N30 6,5 6,5 LAGOON 7,7 5,6 S/B N30 6,5 6,5 LAGOON 7,7 5,5 S/B N30	(E&W)	WO	W15	W25	W36	W46	****
NO 5,5 6,5 LAGOON 5,5 7,6 S/B N1 5,5 6,5 LAGOON 6,7 6,5 S/B N3 6,6 6,5 LAGOON 7,6 7,7 S/B N4 6,6 6,5 LAGOON 7,6 7,7 S/B N4 6,6 6,5 LAGOON 5,5 5,5 S/B N5 5,5 7,6 LAGOON 5,5 5,5 S/B N6 6,5 6,5 LAGOON 7,6 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N10 5,5 6,6 LAGOON 7,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N12 5,5 6,6 LAGOON 5,7 7,8 S/B N13 4,5 6,6 LAGOON 5,7 5,5 S/B N14 4,4 7,7 LAGOON 5,6 6,7 S/B N15 5,6 7,6 LAGOON 5,6 5,5 S/B N16 6,6 6,5 LAGOON 5,6 5,5 S/B N17 6,5 6,6 LAGOON 5,6 5,5 S/B N18 6,6 7,6 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,6 7,6 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 7,6 5,6 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 5,5 LAGOON 5,5 6,7 S/B N26 6,5 LAGOON 5,5 6,7 S/B N27 5,5 7,7 LAGOON 5,5 6,7 S/B N28 4,4 6,6 LAGOON 7,6 5,6 S/B N29 4,5 5,5 LAGOON 7,6 5,5 S/B N31 5,5 6,6 LAGOON 7,6 5,5 S/B N32 5,6 6,5 LAGOON 5,5 6,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,6 5,5 S/B N35 4,4 6,6 LAGOON 7,6 7,6 S/B N36 5,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 7,6 7,6 S/B N39 5,4 6,6 LAGOON 7,6 5,5 S/B N31 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,6 7,6 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 7,7 LAGOON 6,6 6,7 S/B N37 5,5 7,6 LAGOON 7,6 7,6 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N36 4,4 5,5 LAGOON 7,6 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N30 6,5 6,5 LAGOON 7,7 5,5 S/B N31 5,5 6,6 LAGOON 7,7 5,5 S/B N32 6,5 7,7 LAGOON 6,6 6,6 6,7 S/B N33 6,5 7,6 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 6,5 LAGOON 7,7 5,5 S/B N36 6,5 LAGOON 7,7 5,5 S/B N37 6,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,6 S/B N30 6,5 6,5 LAGOON 7,7 5,6 S/B N30 6,5 6,5 LAGOON 7,7 5,5 S/B N30	(N&S)	1	ı	• • 1		1	S/B
M1 5,5 6,6 LAGOON 6,7 6,5 S/B N2 5,5 6,6 LAGOON 5,5 6,7 S/B N3 6,6 6,5 LAGOON 5,5 7,6 S/B N4 6,6 6,5 LAGOON 5,5 7,6 S/B N5 5,5 7,6 LAGOON 5,5 7,6 S/B N6 6,5 6,5 LAGOON 5,5 7,6 S/B N7 5,5 5,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,7 7,6 S/B N9 5,5 7,6 LAGOON 7,7 7,6 S/B N10 5,5 6,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 7,6 5,6 S/B N14 4,4 7,7 LAGOON 5,6 6,7 S/B N15 5,6 6,6 LAGOON 7,6 5,6 S/B N16 6,6 6,5 LAGOON 5,6 6,5 S/B N17 6,5 6,6 LAGOON 5,6 7,6 S/B N18 6,6 7,6 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 5,5 6,5 S/B N21 5,6 6,5 LAGOON 7,6 5,5 S/B N22 5,5 6,6 LAGOON 5,6 7,6 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 5,5 LAGOON 5,5 6,7 S/B N26 6,5 LAGOON 5,5 6,7 S/B N27 5,5 7,7 LAGOON 5,5 6,7 S/B N28 4,4 6,6 LAGOON 7,6 S,6 S/B N31 5,5 6,6 LAGOON 7,6 S,6 S/B N33 5,5 7,6 LAGOON 7,6 S,5 S/B N33 5,5 7,7 LAGOON 6,6 7,7 S/B N34 4,4 6,6 LAGOON 7,6 S,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,6 S,5 S/B N37 5,5 7,6 LAGOON 7,6 S,5 S/B N38 4,4 5,5 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 7,6 S,5 S/B N30 6,5 5,5 LAGOON 7,6 S,5 S/B N31 5,5 6,6 LAGOON 7,6 S,5 S/B N33 4,4 5,5 LAGOON 7,6 S,5 S/B N34 4,5 S,5 LAGOON 7,6 S,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 7,6 S,5 S/B N39 5,4 6,6 LAGOON 7,6 S,5 S/B N30 6,5 S,5 LAGOON 6,6 S,7 S/B N30 6,6 S,5 LAGOON 7,6 S,5 S/B N31 5,5 G,6 LAGOON 7,6 S,5 S/B N32 5,5 G,6 LAGOON 7,6 S,5 S/B N33 5,5 T,6 LAGOON 7,6 S,5 S/B N34 4,5 S,5 LAGOON 7,6 S,5 S/B N35 6,6 LAGOON 7,7 S,5 S/B N36 6,6 S,5 LAGOON 7,7 S,5 S/B N37 5,5 S,6 LAGOON 7,7 S,5 S/B N38 4,4 T,7 LAGOON 6,5 T,7 S/B N39 5,4 G,6 LAGOON 7,7 S,5 S/B N30 6,5 S,5 LAGOON 7,7 S,5 S/B N31 6,6 S,5 LAGOON 7,7 S,5 S/B N32 6,5 S,5 LAGOON 7,7 S,5 S/B N33 6,5 S,5 LAGOON 7,7 S,5 S/B N35 6,5 LAGOON 7,7 S,5 S/B N36 6,5 S,5 LAGOON 7,7 S,5 S/B N37 5,5 S,5 LAGOON 7,7 S,5 S/B N38 6,5 S,5 LAGOON 7,7 S,5 S/B N50 6,5 LAGOON 7,7 S,5 S/B N50 6,5 LAGOON 7,7 S,5 S/B N50 6,5 LAGOON 7,7 S,5 S/B N50		5,5	6,5	LAGOON	5,5	7,6	
N3	N1	5,5		LAGOON		6,5	S/B
N4	N2	5,5	6,6	LAGOON	5,5		S/8
N5							
N6 6,5 6,5 LAGOON 5,5 8,7 S/B N7 5,5 5,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,8 7,7 7,6 S/B N9 5,5 7,6 LAGOON 5,6 6,7 S/B N10 5,5 6,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 6,7 6,7 8,7 8 N12 5,5 6,6 LAGOON 7,6 5,5 5,6 N14 4,4 7,7 LAGOON 5,6 6,5 5,5 S/B N14 4,4 7,7 LAGOON 5,6 6,5 5,5 S/B N15 5,6 6,6 LAGOON 5,6 6,5 5,8 N16 6,6 6,5 LAGOON 5,6 7,6 5,5 S/B N17 6,5 6,6 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 5,6 7,6 5,5 S/B N19 6,6 8,7 LAGOON 5,6 7,6 5,5 S/B N20 5,6 6,5 LAGOON 5,6 7,6 5,6 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N22 5,5 6,6 LAGOON 5,5 6,7 S/B N22 5,5 6,6 LAGOON 5,5 6,6 S/B N22 5,5 6,6 LAGOON 5,5 6,6 S/B N22 5,5 6,6 LAGOON 5,5 6,6 S/B N22 5,5 6,6 LAGOON 5,5 7,7 S/B N22 5,5 6,6 LAGOON 5,5 7,7 S/B N22 5,5 6,6 LAGOON 5,5 7,7 S/B N24 5,5 5,5 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 5,5 LAGOON 7,7 5,5 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 5,5 LAGOON 7,7 7,6 S/B N35 6,5							
N7 5,5 5,5 LAGOON 7,7 7,6 S/B N8 5,6 6,5 LAGOON 7,8 7,7 S/B N9 5,5 7,6 LAGOON 5,6 6,7 S/B N10 5,5 6,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 6,7 6,7 S/B N13 4,5 6,6 LAGOON 7,7 5,5 S/B N14 4,4 7,7 LAGOON 5,6 5,5 S/B N15 5,6 7,6 LAGOON 5,6 5,5 S/B N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,6 7,6 S/B N18 6,6 7,6 LAGOON 5,6 7,6 S/B N19 6,6 8,7 LAGOON 5,5 6,5 S/B N20 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,6 S/B N25 5,5 S,5 LAGOON 5,5 6,6 S/B N26 6,5 6,6 LAGOON 5,5 6,6 S/B N27 5,5 7,7 LAGOON 5,5 6,6 S/B N27 5,5 7,7 LAGOON 5,5 6,6 S/B N29 4,5 5,5 LAGOON 7,6 7,6 S/B N29 4,5 5,5 LAGOON 7,6 7,6 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N32 5,6 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N34 5,4 6,6 LAGOON 7,6 7,6 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 7,7 LAGOON 6,6 7,7 S/B N37 5,5 7,6 LAGOON 7,7 5,5 S/B N38 4,4 5,5 S,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,6 7,6 S/B N30 6,5 6,5 LAGOON 6,6 6,7 S/B N31 5,5 6,6 LAGOON 7,6 5,5 S/B N34 5,5 5,5 LAGOON 6,6 6,7 S/B N37 5,5 S,5 LAGOON 6,6 S/B N38 4,4 5,5 S,5 LAGOON 6,6 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N40 6,6 7,6 LAGOON 7,6 7,6 S/B N41 5,5 S,5 LAGOON 6,5 7,7 S/B N42 5,5 S,5 LAGOON 6,5 S/B N43 5,5 S,5 LAGOON 7,6 S/B N44 5,5 S,5 LAGOON 7,6 S/B N45 5,5 S,5 LAGOON 7,7 5,6 S/B N46 4,5 S,5 LAGOON 7,7 5,6 S/B N47 5,5 S,5 LAGOON 7,7 5,5 S/B N48 5,5 S,5 LAGOON 7,7 5,5 S/B N50 5,5 S,5 LAGOON 7,7 5,5 S/B N51 6,6 LAGOON 7,7 5,5 S/B N52 6,5 LAGOON 7,7 5,5 S/B N53 5,5 S,5 S,5 S,5 S,5 S,5 S/B N53 5,5 S,5 S,5 S,5 S,5 S,5 S,5 S,5 S,5 S,5	. 1						l .
N8	,						
N9 5,5 7,6 LAGOON 5,6 6,7 S/B N10 5,5 6,6 LAGOON 5,7 7,8 S/B N11 6,6 7,6 LAGOON 7,7 5,5 S/B N13 4,5 6,6 LAGOON 7,6 5,6 S/B N14 4,4 7,7 LAGOON 5,6 5,5 S/B N15 5,6 7,6 LAGOON 5,6 5,5 S/B N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,6 7,6 S/B N18 6,6 7,6 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 5,5 6,5 S/B N20 5,6 6,5 LAGOON 7,6 5,5 S/B N21 5,6 6,5 LAGOON 7,6 5,6 S/B N21 5,6 6,5 LAGOON 7,6 5,6 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,7 S/B N25 5,5 S,5 LAGOON 5,5 6,7 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 5,5 6,6 S/B N29 4,5 5,5 LAGOON 5,5 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N40 6,5 5,5 LAGOON 6,5 7,7 S/B N41 5,6 5,5 LAGOON 6,5 7,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 5,5 LAGOON 7,6 5,5 S/B N45 5,5 CAGOON 7,7 5,6 S/B N46 4,5 6,7 LAGOON 7,7 5,6 S/B N47 5,5 S/B N48 5,5 6,6 LAGOON 7,7 5,6 S/B N49 6,5 6,5 LAGOON 7,7 5,6 S/B N40 6,5 6,5 LAGOON 7,7 5,5 S/B N41 5,6 6,5 LAGOON 7,7 5,5 S/B N42 6,5 5,5 LAGOON 7,7 5,5 S/B N43 6,6 5,5 LAGOON 7,7 5,5 S/B N44 5,5 5,5 LAGOON 7,7 5,5 S/B N45 5,5 6,6 LAGOON 7,7 5,5 S/B N46 5,5 5,5 LAGOON 7,7 5,6 S/B N50 5,5 6,6 LAGOON 7,7 5,5 S/B N51 6,6 5,5 LAGOON 7,7 5,6 S/B N52 6,5 LAGOON 7,7 5,5 S/B N53 6,5 5,5 LAGOON 7,7 5,6 S/B N53 6,5 5,5 LAGOON 7,7 5,6 S/B N53 6,5 5,5 LAGOON 7,7 5,6 S	_ [ľ
N10	1			1 1			•
N11 6,6 7,6 LAGOON 6,7 6,7 S/B N12 5,5 6,6 LAGOON 7,6 5,5 S/B N13 4,5 6,6 LAGOON 7,6 5,6 S/B N14 4,4 7,7 LAGOON 5,6 5,5 S/B N15 5,6 7,6 LAGOON 5,6 7,6 S/B N16 6,6 6,5 LAGOON 5,6 7,6 S/B N17 6,5 6,6 LAGOON 5,5 7,6 S/B N18 6,6 7,6 LAGOON 5,5 6,5 S/B N19 6,6 8,7 LAGOON 6,7 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,5 S/B N21 5,6 6,5 LAGOON 7,6 5,5 S/B N22 5,5 6,6 LAGOON 7,6 5,6 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 6,6 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 7,6 S/B N25 5,5 5,5 LAGOON 5,5 7,6 S/B N26 6,5 6,6 LAGOON 5,5 7,6 S/B N27 5,5 7,7 LAGOON 5,5 7,7 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N33 5,5 7,6 LAGOON 7,6 7,7 S/B N34 5,4 6,6 LAGOON 7,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 7,7 LAGOON 6,6 7,7 S/B N37 5,5 7,6 LAGOON 7,7 5,5 S/B N38 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N39 5,4 6,6 LAGOON 7,7 5,5 S/B N40 6,6 7,6 LAGOON 7,7 5,5 S/B N41 5,5 6,7 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 5,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,7 LAGOON 6,6 6,7 S/B N45 5,5 LAGOON 6,6 6,7 S/B N46 4,5 5,5 LAGOON 6,6 6,7 S/B N47 5,5 S/B LAGOON 7,6 7,6 S/B N40 6,5 6,5 LAGOON 7,6 7,6 S/B N41 5,6 5,5 LAGOON 6,5 7,7 S/B N42 6,5 LAGOON 6,5 S/B N44 5,5 6,7 LAGOON 6,5 S/B N44 5,5 6,7 LAGOON 6,5 7,7 S/B N45 5,5 LAGOON 6,5 7,7 S/B N49 6,5 6,5 LAGOON 7,6 7,6 S/B N40 6,5 6,5 LAGOON 7,7 5,6 S/B N50 5,5 6,6 LAGOON 7,7 5,5 S/B N51 6,6 S,5 LAGOON 7,7 5,5 S/B N52 6,5 LAGOON 7,7 5,5 S/B N53 6,5 S,5 S,5 S,5 S/B							
M12	. 1						1
M13						5,5	
N14	. N13			LAGOON		5,6	
N16	,		7,7	LAGOON	5,6		
N17 6,5 6,6 LAGOON 5,5 6,5 S/B N18 6,6 7,6 LAGOON 7,6 5,5 S/B N19 6,6 8,7 LAGOON 6,7 5,5 S/B N20 5,6 6,5 LAGOON 7,6 5,5 S/B N21 5,6 6,5 LAGOON 5,6 7,8 S/B N22 5,5 6,6 LAGOON 5,6 6,6 S/B N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 6,6 S/B N25 5,5 5,5 LAGOON 5,5 7,6 S/B N26 5,5 7,7 LAGOON 5,5 7,6 S/B N27 5,5 7,7 LAGOON 5,5 7,6 S/B N28 4,4 6,6 LAGOON 5,5 7,7 S/B N29 4,5 5,5 LAGOON 6,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 7,7 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 7,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 7,7 S/B N38 4,4 7,7 LAGOON 6,6 7,7 S/B N38 4,4 5,5 LAGOON 6,6 7,7 S/B N39 6,6 LAGOON 7,7 5,5 S/B N31 5,6 5,5 LAGOON 6,6 5,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 5,7 S/B N36 4,4 5,5 LAGOON 6,6 6,7 S/B N37 5,5 7,6 LAGOON 6,6 5,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,5 S/B N41 5,6 5,5 LAGOON 6,6 6,7 S/B N42 4,5 5,5 LAGOON 6,6 6,7 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N45 5,5 6,6 LAGOON 7,7 5,6 S/B N46 4,5 5,5 LAGOON 7,7 5,6 S/B N47 5,5 6,6 LAGOON 7,7 7,6 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,6 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N50 5,5 6,5 LAGOON 7,7 7,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B	N15			LAGOON	6,6		
N18			- 1				
N19 6,6 8,7 LAGOON 6,7 5,5 5/8 N20 5,6 6,5 LAGOON 7,6 5,6 5/8 N21 5,6 6,5 LAGOON 5,6 7,8 5/8 N22 5,5 6,6 LAGOON 5,6 6,6 N23 6,5 7,7 LAGOON 5,5 6,7 5/8 N24 5,6 8,7 LAGOON 5,5 6,6 5/8 N25 5,5 5,5 LAGOON 5,5 6,6 5/8 N26 6,5 6,6 LAGOON 5,5 7,7 5/8 N27 5,5 7,7 LAGOON 8,7 6,6 5/8 N28 4,4 6,6 LAGOON 7,6 7,7 5/8 N29 4,5 5,5 LAGOON 6,6 7,6 5/8 N31 5,5 6,6 LAGOON 7,6 6,7 5/8 N32 5,6 7,6 LAGOON 7,6 6,7 5/8 N33 5,5 7,6 LAGOON 6,6 7,7 5/8 N34 5,4 6,6 LAGOON 7,7 5,5 5/8 N35 4,4 7,7 LAGOON 6,6 7,7 5/8 N36 4,4 6,6 LAGOON 7,7 5,5 5/8 N37 5,5 5,5 LAGOON 6,6 6,7 5/8 N38 4,4 5,5 LAGOON 6,6 6,7 5/8 N39 5,4 6,6 LAGOON 7,7 5,5 5/8 N40 6,6 7,6 LAGOON 6,6 6,7 5/8 N41 5,6 5,5 LAGOON 6,6 6,7 5/8 N42 4,5 5,5 LAGOON 6,6 6,7 5/8 N43 4,5 5,5 LAGOON 6,6 6,7 5/8 N44 5,5 6,6 LAGOON 7,6 5,5 5/8 N45 5,5 6,6 LAGOON 7,6 5,5 5/8 N46 4,5 6,7 LAGOON 6,5 6,6 5/8 N47 5,5 6,6 LAGOON 7,7 6,5 5/8 N48 5,5 6,6 LAGOON 7,7 6,5 5/8 N49 6,5 6,6 LAGOON 7,7 6,5 5/8 N49 6,5 6,6 LAGOON 7,7 6,5 5/8 N50 5,5 6,6 LAGOON 7,7 6,5 5/8 N51 6,5 5,5 LAGOON 7,7 6,5 5/8 N52 6,5 5,5 LAGOON 7,7 6,6 5/8 N53 6,5 5,5 LAGOON 7,7 5,5 5/8 N54 5,4 7,7 LAGOON 7,7 5,5 5/8 N55 5,5 6,6 LAGOON 5,5 5,6 5/8 N55 5,5 6,6 LAGOON	1					6,5	
N20					4,0		I .
N21 5,6 6,5 LAGOON 5,6 7,8 S/8 N22 5,5 6,6 LAGOON 5,6 6,6 S/8 N23 6,5 7,7 LAGOON 5,5 6,7 S/8 N24 5,6 8,7 LAGOON 5,5 7,6 S/8 N25 5,5 5,5 LAGOON 5,5 7,7 S/8 N26 6,5 6,6 LAGOON 5,5 7,7 S/8 N27 5,5 7,7 LAGOON 7,6 6,6 S/8 N28 4,4 6,6 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 7,6 7,6 S/8 N30 6,5 6,6 LAGOON 7,6 7,6 S/8 N31 5,5 6,6 LAGOON 7,6 7,6 S/8 N32 5,6 7,6 LAGOON 7,7 5,5 S/8	1			1 - 1			1 .
N22 5,5 6,6 LAGOON 5,6 6,6 S/8 N23 6,5 7,7 LAGOON 5,5 6,7 S/8 N24 5,6 8,7 LAGOON 5,5 7,6 S/8 N25 5,5 5,5 LAGOON 5,5 7,7 S/8 N26 6,5 6,6 LAGOON 5,5 7,7 S/8 N27 5,5 7,7 LAGOON 7,6 7,7 S/8 N28 4,4 6,6 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 7,6 7,7 S/8 N30 6,5 6,6 LAGOON 7,6 7,6 S/8 N31 5,5 6,6 LAGOON 7,6 7,6 S/8 N32 5,6 7,6 LAGOON 7,6 7,6 S/8 N33 5,5 7,6 LAGOON 7,7 5,5 S/8				1 1	5.6		
N23 6,5 7,7 LAGOON 5,5 6,7 S/B N24 5,6 8,7 LAGOON 5,5 7,6 S/B N25 5,5 5,5 LAGOON 5,5 7,6 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 8,7 6,6 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N29 4,5 5,5 LAGOON 7,6 7,7 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N31 5,5 7,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 7,7 5,5 S/B N33 5,5 7,6 LAGOON 7,7 5,5 S/B				1 1			
N24 5,6 8,7 LAGOON 5,5 7,6 S/B N25 5,5 5,5 LAGOON 5,5 6,6 S/B N26 6,5 6,6 LAGOON 5,5 7,7 S/B N27 5,5 7,7 LAGOON 8,7 6,6 S/B N28 4,4 6,6 LAGOON 7,6 7,7 S/B N29 4,5 5,5 LAGOON 6,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 6,7 S/B N30 6,5 6,6 LAGOON 7,6 7,6 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 7,6 7,6 S/B N33 5,5 7,6 LAGOON 7,7 5,5 S/B N33 5,5 7,6 LAGOON 7,7 5,5 S/B				1 1			
N25 5,5 5,5 LAGOON 5,5 6,6 S/8 N26 6,5 6,6 LAGOON 5,5 7,7 S/8 N27 5,5 7,7 LAGOON 8,7 6,6 S/8 N28 4,4 6,6 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 6,6 7,6 S/8 N30 6,5 6,6 LAGOON 7,6 6,7 S/8 N31 5,5 6,6 LAGOON 7,6 7,6 S/8 N32 5,6 7,6 LAGOON 6,6 7,7 S/8 N32 5,6 7,6 LAGOON 6,6 7,7 S/8 N33 5,5 7,6 LAGOON 6,6 7,7 S/8 N34 5,4 6,6 LAGOON 7,7 5,5 S/8 N37 5,5 7,6 LAGOON 7,7 5,5 S/8				1		7,6	1
N27 5,5 7,7 LAGOON 8,7 6,6 S/8 N28 4,4 6,6 LAGOON 7,6 7,7 S/8 N29 4,5 5,5 LAGOON 6,6 7,6 S/8 N30 6,5 6,6 LAGOON 7,6 6,7 S/8 N31 5,5 6,6 LAGOON 7,6 7,6 S/8 N32 5,6 7,6 LAGOON 6,6 7,7 S/8 N33 5,5 7,6 LAGOON 6,6 7,7 S/8 N33 5,5 7,6 LAGOON 6,6 7,7 S/8 N35 4,4 7,7 LAGOON 7,7 5,5 S/8 N37 5,5 7,6 LAGOON 7,7 5,5 S/8 N37 5,5 7,6 LAGOON 6,7 5,5 S/8 N37 5,5 7,6 LAGOON 7,7 5,5 S/8	N25			LAGOON			1 .
N28 4,4 6,6 LAGOON 7,6 7,7 S/8 M29 4,5 5,5 LAGOON 6,6 7,6 S/B M30 6,5 6,6 LAGOON 7,6 7,6 S/B M31 5,5 6,6 LAGOON 7,6 7,6 S/B M32 5,6 7,6 LAGOON 6,6 7,7 S/B M33 5,5 7,6 LAGOON 6,6 6,7 S/B M34 5,4 6,6 LAGOON 6,6 7,7 S/B M35 4,4 7,7 LAGOON 6,6 7,7 S/B M35 4,4 7,7 LAGOON 6,6 7,7 S/B M36 4,4 7,7 LAGOON 6,6 6,7 S/B M37 5,5 7,6 LAGOON 6,6 6,7 S/B M38 4,4 5,5 LAGOON 7,7 5,6 S/B				LAGOON			S/B
N29 4,5 5,5 LAGOON 6,6 7,6 S/B N30 6,5 6,6 LAGOON 7,6 6,7 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 6,7 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,7 5,5 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B				LAGOON			S/B
N30 6,5 6,6 LAGOON 7,6 6,7 S/B N31 5,5 6,6 LAGOON 7,6 7,6 S/B N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N35 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 7,6 5,5 S/B	1						
N31 5,5 6,6 LAGOON 7,6 7,6 7,8 N32 5,6 7,6 LAGOON 6,6 7,7 S/B N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 8,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 7,6 5,5 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 5,5 S/B N44 5,5 6,6 LAGOON 7,6 7,6 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N47 5,5 6,6 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B N55 5,5 5,6 S/B LAGOON 7,7 5,5 S/B N55 5,5 5,6 S/B LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 5,6 S/B N55 5,5 S/B N55 5,5 S/B N55 5,5 S/B N55 5,5 S/B N55 S/B		4,5		1 1	-		
N32				1 . 1			1
N33 5,5 7,6 LAGOON 6,6 6,7 S/B N34 5,4 6,6 LAGOON 7,7 5,5 S/B N35 4,4 7,7 LAGOON 6,6 7,7 S/B N36 4,4 6,6 LAGOON 7,7 5,5 S/B N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,6 6,7 S/B N39 5,4 6,6 LAGOON 8,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 7,7 5,6 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 7,6 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B			-	1 . 1			I
N34						67	1
N35				1		5.5	1
N36				1 1			•
N37 5,5 7,6 LAGOON 6,6 6,7 S/B N38 4,4 5,5 LAGOON 6,7 5,5 S/B N39 5,4 6,6 LAGOON 8,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 6,6 6,6 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 6,7 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N44 5,5 6,6 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,7 6,5 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B							
N39 5,4 6,6 LAGOON 8,6 6,7 S/B N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 7,6 5,5 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 7,6 5,5 S/B N44 5,5 6,5 LAGOON 7,6 7,6 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 7,6 7,6 S/B N48 5,5 6,7 LAGOON 6,5 6,6 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 6,5 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 7,6 S/B N53 6,5 5,5 LAGOON 7,7 5,5 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B	N37	5,5		LAGOON			S/B
N40 6,6 7,6 LAGOON 7,7 5,6 S/B N41 5,6 5,5 LAGOON 6,6 6,6 S/B N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,8 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,5 6,5 S/B N47 5,5 6,6 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 6,6 S/B		4,4		LAGOON			S/B
N41 5,6 5,5 LAGOON 6,6 6,6 5/8 N42 4,5 5,5 LAGOON 7,6 5,5 5/8 N43 4,5 5,5 LAGOON 6,6 6,7 5/8 N44 5,5 6,5 LAGOON 7,8 5,5 5/8 N45 5,5 6,6 LAGOON 7,6 7,6 5/8 N46 4,5 6,7 LAGOON 6,5 6,6 5/8 N47 5,5 6,6 LAGOON 6,5 7,7 5/8 N48 5,5 6,7 LAGOON 6,5 7,7 5/8 N49 6,5 6,6 LAGOON 7,7 6,6 5/8 N50 5,5 6,5 LAGOON 7,7 7,6 5/8 N51 6,6 5,5 LAGOON 7,7 7,6 5/8 N52 6,5 6,5 LAGOON 7,7 7,6 5/8 N53 6,5 5,5 LAGOON 7,7 7,6 5/8 N54 5,4 7,7 LAGOON 7,7 5,5 5/8 N55 5,5 6,6 LAGOON 5,5 5,6 5/8				I			
N42 4,5 5,5 LAGOON 7,6 5,5 S/B N43 4,5 5,5 LAGOON 6,6 6,7 S/B N44 5,5 6,5 LAGOON 7,8 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,7 6,5 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B						5,6	1
N43 4,5 5,5 LAGOON 6,6 6,7 S/8 N44 5,5 6,5 LAGOON 7,8 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,7 6,5 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B			5,5	1		6,6	1
N44 5,5 6,5 LAGOON 7,8 5,5 S/B N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6,7 6,5 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B		4,3					1 .
N45 5,5 6,6 LAGOON 7,6 7,6 S/B N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6.7 6,5 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B							
N46 4,5 6,7 LAGOON 6,5 6,6 S/B N47 5,5 6,6 LAGOON 6.7 6,5 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B							1 -
N47 5,5 6,6 LAGOON 6.7 6,5 S/B N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 7,7 7,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B							
N48 5,5 6,7 LAGOON 6,5 7,7 S/B N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 6.5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				1 1	6.7		1
N49 6,5 6,6 LAGOON 7,7 6,5 S/B N50 5,5 6,5 LAGOON 6.5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B		5,5		1 1			
N50 5,5 6,5 LAGOON 6.5 6,6 S/B N51 6,6 5,5 LAGOON 7,7 7,6 S/B N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B	N49	6,5			7,7		
N52 6,5 6,5 LAGOON 7,7 6,6 S/B N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B		5,5	6,5	LAGOON	6.5	6,6	S/B
N53 6,5 5,5 LAGOON 7,6 7,6 S/B N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				1 1			1
N54 5,4 7,7 LAGOON 7,7 5,5 S/B N55 5,5 6,6 LAGOON 5,5 5,6 S/B				[]			
N55 5,5 6,6 LAGOON 5,5 5,6 S/B							
				1			1
\$/B \$/B \$/B \$/B \$/B	KOD	\$/B	S/B	S/B	5,5 \$/B	\$/B	3/5

Table 2
Volumes & Preservatives
Soil & Sediment Samples

Parameters	No.	Size	Туре	Preserv
TPH	1	100 ml	glass	none
Semivolatiles Pesticides Herbicides	1	500 ml	glass	none
Metals Cyanide	1	200 ml	polyethylene	none
Radiologic	1	500 gram	plastic bag	none

Table 3 Organic & Inorganic Data Summary Soil Samples

Parameter	Units	BKG	COMP1	COMP2
TPH	mg/kg	ND	ND	ND
TPH - Misc	mg/kg	14.9	5.1	5.1
semivolatiles				,
Benzoic Acid	ug/kg	מא	ND	30
2-Methylnaphthalene	ug/kg	ND	ND	10
Phenanthrene	ug/kg	ND	ND	30
Di-n-butylphthalate	ug/kg	ND	ND	50
Fluoranthrene	ug/kg	ND	30	50
Pyrene	ug/kg	ND	30	30
Butylbenzylphthalate	ug/kg	ND	ND	ND
Bis(2-Ethylhexyl)phthalate	ug/kg	ND	ND	מא
Pesticides/PCBs	ug/kg	ND	ND	מא
Herbicides	ug/kg	ND	ND	ND
Metals				
Arsenic	mg/kg	5.8	5.89	7.41
Lead	mg/kg	17.4	13.6	15.9
Mercury	mg/kg	ND	ND	ND
Selenium	mg/kg	מא	ND	מא
Thallium	mg/kg	ND_	ND	ND
Antimony	mg/kg	6.9	ИД	7.4
Beryllium	mg/kg	ND	ND	ND
Cadmium	mg/kg	1.1	ND	ИД
Chromium	mg/kg	14.5	18.1	15.5
Copper	mg/kg	24.0	22.8	25.0
Nickel	mg/kg	18.0	18.3	19.2
Silver	mg/kg	ИД	ND	ИД
Zinc	mg/kg	61.6	62.4	57.4
Cyanide	ug/kg	ND	ND	ND

The state of the s

Table 4A Radiologic Data Summary Unbiased Soil Samples

Parameter	Units	BKG	UB1	UB2	UB3	UB4	UB5	UB6
Туре		Background	investigative	investigative	investigative	investigative	investigative	investigative
Depth		0-6"	0-6"	0-6"	0-6"	0-6"	0-6"	0-6"
Laboratory		1TC	11C	ITC	170	11C	110	ITC
Gross Alpha	pCi/g	33.0 +/- 11.4	23.6 +/- 9.9	26.0 +/- 10.1	25.8 +/- 10.1	20.0 +/- 8.5	18.3 +/- 8.3	27.5 +/- 9.9
Gross Beta	pCi/g	27.9 +/- 9.6	23.5 +/- 8.5	30.0 +/- 11.1	31.1 +/- 10.9	29.0 +/- 9.9	25.6 +/- 9.7	25.1 +/- 8.0
Uranium-234	pCi/g	1.1 +/- 0.3	1.3 +/- 0.3	1.2 +/- 0.3	0.9 +/- 0.2	1.0 +/- 0.2	1.3 +/- 0.3	1.2 +/- 0.3
Uranium 235/236	pCi/g	< 0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Uranium 238	pCi/g	1.1 +/- 0.3	1.0 +/- 0.2	1.2 +/- 0.3	0.9 +/- 0.2	0.7 +/- 0.2	1.0 +/- 0.2	1.2 +/- 0.3
Thorium 230	pCi/g	3.6 +/- 0.6	2.5 +/- 0.5	1.8 +/- 0.4	2.2 +/- 0.5	2.1 +/- 0.4	3.0 +/- 0.7	2.5 +/- 0.5
Thorium-232	pC1/g	1.5 +/- 0.3	1.0 +/- 0.3	1.2 +/- 0.3	1.2 +/- 0.3	1.1 +/- 0.3	1.6 +/- 0.4	1.2 +/- 0.3
Potassium-40	pCi/g	18.1 +/- 2.9	9.9 +/- 1.4	11.7 +/- 1.6	14.6 +/- 1.9	17.7 +/- 2.9	18.6 +/- 3.0	19.7 +/- 3.2
Cesium-137	pCi/g	< 0.2	0.3 +/- 0.05	0.3 +/- 0.06	0.2 +/- 0.06	<0.2	<0.2	0.2 +/- 0.05
Radium-226	pCi/g	1.1 +/- 0.1	1.0 +/- 0.1	1.2 +/- 0.1	1.2 +/- 0.1	1.1 +/- 0.1	1.1 +/- 0.1	1.2 +/- 0.1
Radium-228	pCi/g	1.3 +/- 0.2	1.1 +/- 0.1	1.2 +/- 0.2	1.2 +/- 0.2	1.4 +/- 0.2	1.6 +/- 0.2	1.5 +/- 0.2

Table 48 Radiologic Data Summery Area B1 Biased Soit Samples

Parameter	Units	BKG	B1A	B1A	818	B1C_	<u> </u>
Туре		Background	investigative	split of BIA	dupl. of BIA	investigative	
Depth		0-6*	0-6"	0-6"	0-6*	6-12"	
Laboratory		İŢC	11C	CEP	110	110	
Gross Alpha	pCi/g	33.0 +/- 11.4	1650 +/- 340	44.6 +/- 1.8	1980 +/- 400	1810 +/- 370	
Gross Beta	pCi/g	27.9 +/- 9.6	313 +/- 66	21.2 +/- 0.6	304 +/- 64	274 +/- 58	
Uranium-234	pCi/g	1.1 +/- 0.3	7.9 +/- 1.0	4.2 +/- 0.5	6.3 +/- 1.1	7.4 +/- 1.0	
Uranium 235/236	pCi/g	< 0.6	<0.6	0.6 +/- 0.2	<0.6	<0.6	
Uranium 238	pCi/g	1.1 +/- 0.3	6.9 +/- 0.9	1.6 +/- 0.3	6.3 +/- 1.1	7.0 +/- 1.0	 ·
Thorium 230	pCi/g	3.6 +/- 0.6	1580 +/- 370	<0.2	1390 +/- 270	1430 +/- 360	
Thorium-232	pCi/g	1.5 +/- 0.3	5.1 +/- 1.6	1.0 +/- 0.2	4.1 +/- 1.1	6.7 +/- 2.2	
Potassium-40	pCi/g	18.1 +/- 2.9	12.4 +/- 2.2	11.1 +/- 1.4	6.8 +/- 1.5	11.6 +/- 2.0	
Cesium-137	pCi/g	< 0.2	<0.2	0.1 +/- 0.1	<0.2	0.3 +/- 0.1	
Radium-226	pCi/g	1.1 +/- 0.1	39.5 +/- 3.3	41.4 +/- 0.4	29.6 +/- 4.5	24.0 +/- 3.7	
Radium-228	pCi/g	1.3 +/- 0.2	1.0 +/- 0.3	<0.1	1.0 +/- 0.3	1.3 +/- 0.3	

Table 4C Radiologic Data Summary Area B2 Biased Soil Samples

Parameter	Units	BKG	B2A	BZA	828	82C		
Туре		Background	investigative	split of BZA	dupl, of BZA	investigative		
Depth		0-6¤	0-64	0-6#	0-6"	6-12"		·
Laboratory		ITC	1TC .	CEP	170	110		
Gross Alpha	pCi/g	33.0 +/- 11.4	7810 +/- 1570	199 +/- 2.4	5560 +/ 1120	1080 +/- 220		
Gross Beta	pCi/g	27.9 +/- 9.6	969 +/- 197	34.5 +/- 0.5	776 +/- 159	149 +/- 35		
Uranium-234	pCi/g	1.1 +/- 0.3	18.0 +/- 2.4	14.4 +/- 0.8	11.3 +/- 1.5	2.0 +/- 0.3		
Uranium 235/236	pCi/g	< 0.6	2.1 +/- 0.4	0.2 +/- 0.1	<0.6	0.7 +/- 0.2		
Uranium 238	pCi/g	1.1 +/- 0.3	11.4 +/- 1.6	2.4 +/- 0.3	6.5 +/- 0.9	2.1 +/- 0.4	·	<u> </u>
Thorium 230	pCi/g	3.6 +/- 0.6	3720 +/- 780	<0.2	2820 +/- 580	574 +/- 113		
Thorium-232	pCi/g	1.5 +/- 0.3	4.5 +/- 1.3	1.3 +/- 0.5	13.1 +/- 3.0	1.2 +/- 0.5		<u> </u>
Potassium-40	pCi/g	18.1 +/- 2.9	9.4 +/- 1.8	9.2 +/- 3.3	9.2 +/- 1.7	9.5 +/- 1.6		
Cesium-137	pCi/g	< 0.2	<0.2	<0.1	<0.2	<0.2		
Radium-226	pCi/g	1.1 +/- 0.1	15.1 +/- 1.9	132 +/- 8.0	59.3 +/- 4.7	9.9 +/- 1.6		
Radium-228	pCi/g	1.3 +/- 0.2	1.3 +/- 0.4	150 +/- 38	1.2 +/- 0.3	1.0 +/- 0.2		

Table 4D Radiologic Data Summary Composite Soil Samples

Parameter	Units	BKG	COMP1	COMP2			
Туре		Background	investigative	investigative			<u> </u>
Depth		0-6"	0-6"	0-64			
Laboratory		170	1TC	ITC			
Gross Alpha	pCi/g	33.0 +/- 11.4	15.0 +/- 7.1	18.4 +/- 8.2			
Gross Beta	pCi/g	27.9 +/- 9.6	25.5 +/- 10.1	21.8 +/- 9.8			
Uranium-234	pCi/g	1.1 +/- 0.3	1.0 +/- 0.3	1.0 +/- 0.2		 <u></u>	
Uranium 235/236	pCi/g	< 0.6	<0.6	<0.6			
Uranium 238	pCi/g	1.1 +/- 0.3	1.0 +/- 0.3	0.8 +/- 0.2	· · · · · · · · · · · · · · · · · · ·		
Thorium 230	pCi/g	3.6 +/- 0.6	2.2 +/- 0.5	2.4 +/- 0.4			
Thorium-232	pCi/g	1.5 +/- 0.3	1.3 +/- 0.3	1.2 +/- 0.3			
Potassium-40	pCi/g	18.1 +/- 2.9	10.1 +/- 1.4	18.2 +/- 2.9			
Cesium-137	pCi/g	< 0.2	<0.2	<0.2			
Radium-226	pCi/g	1.1 +/- 0.1	1.1 +/- 0.1	1.2 +/- 0.1			
Radium-228	pCi/g	1.3 +/- 0.2	1.2 +/- 0.2	1.3 +/- 0.2			

Table 5
Organic & Inorganic Data Summary
Sediment Samples

parameter	Units	BKG	83	84
TPH	mg/kg	ND	ND	ND
TPH - Misc	mg/kg	14.9	12.0	6.3
	шу/ку	14.9	12.0	7
Semivolatiles				
Benzoic Acid	ug/kg	ND	35	140
2-Methylnaphthalene	ug/kg	ND	ND	ND
Phenanthrene	ug/kg	ND	30	40
Di-n-butylphthalate	ug/kg	סא	10	100
Fluoranthrene	ug/kg	ND	40	ND
Pyrene	ug/kg	ND	50	30
Butylbenzylphthalate	ug/kg	ND	ND	50
Bis(2-Ethylhexyl)phthalate	ug/kg	ND	ND	190
Pesticides/PCBs	ug/kg	ND	ND	ND
Herbicides	ug/kg	ИD	ND	ИD
Metals				
Arsenic	mg/kg	5.8	2.12	5.6
Lead	mg/kg	17.4	12.4	17.8
Mercury	mg/kg	ND	מא	0.18
Selenium	mg/kg	ND	ND	ИD
Thallium	mg/kg	ND	ND	ИD
Antimony	mg/kg	6.9	מא	6.7
Beryllium	mg/kg	ND	סא	סא
Cadmium	mg/kg	1.1	ND	ND
Chromium	mg/kg	14.5	5.5	13.1
Copper	mg/kg	24.0	15.2	23.0
Nickel	mg/kg	18.0	9.7	16.3
Silver	mg/kg	ND	ND	ND
Zinc	mg/kg	61.6	32.8	56.8
Cyanide	ug/kg	ND	ND	ND

Table 6 Radiologic Data Summary Sediment Samples

Parameter	Units	BKG	s1	S2	s3	S4
Туре		Background	investigative	investigative	investigative	investigative
Depth		0-6"	0-6"	0-6"	0-6"	0-18"
Laboratory		ITC	1TC	110	ITC	170
Gross Alpha	pCi/g	33.0 +/- 11.4	32.1 +/- 11.8	17.4 +/- 7.7	23.2 +/- 9.1	219 +/- 50
Gross Beta	pC1/g	27.9 +/- 9.6	26.7 +/- 11.0	25.7 +/- 9.1	17.9 +/- 7.6	27.3 +/ 9.4
Uranium-234	pCi/g	1.1 +/- 0.3	1.0 +/- 0.3	1.0 +/- 0.3	0.7 +/- 0.2	1.1 +/ 0.3
Uranium 235/236	pCi/g	< 0.6	<0.6	<0.6	<0.6	<0.6
Uranium 238	pCi/g	1.1 +/- 0.3	0.9 +/- 0.2	1.1 +/- 0.3	0.8 +/- 0.2	0.6 +/- 0.2
Thorium 230	pCi/g	3.6 +/- 0.6	1.3 +/- 0.3	2.3 +/- 0.4	2.6 +/- 0.4	2.4 +/- 0.5
Thorium-232	pCi/g	1.5 +/- 0.3	1.0 +/- 0.3	1,2 +/- 0.3	0.7 +/- 0.2	1.1 +/- 0.3
Potassium-40	pCi/g	18.1 +/- 2.9	17.7 +/- 3.0	. 5.1 +/- 1.0	10.2 +/- 1.4	10.9 +/- 1.5
Cesium-137	pCi/g	< 0.2	<0.2	.07 +/03	<0.2	<0.2
Radium-226	pCi/g	1.1 +/- 0.1	1.2 +/+ 0.2	1.2 +/- 0.1	0.8 +/- 0.1	1.2 +/- 0.1
Radium-228	pCi/g	1.3 +/- 0.2	1.2 +/- 0.3	1.3 +/- 0.2	0.6 +/- 0.1	1.3 +/- 0.2

TABLE 7

FORD (EARTH CITY), PHASE II PROPERTY EVALUATION DOWNHOLE GAMMA LOGGING RESULTS

(6=	DEPTH INTERVALS)	UNITS ¹	WELL MW-101	WELL MU-102	WELL MU-103	WELL MN-104	WELL MW-105	WELL MU-106	WELL MM-107
6	A	CNTS/MIN	3600	4000	4000	3900	3700	3800	3600
12	В	CNTS/MIN	4000	4200	4000	4200	3600	3800	4000
18	C	CHTS/MIN	4000	4200	4000	4400	3800	3800	3600
24	D	CHTS/HIN	4000	4200	4000	4400	4000	4400	3800
30	E 🗸	CHTS/HIN	4200	4300	3200	4500	4000	4400	3800
36	F	CNTS/MIN	4000	4200	4000	4700	4000	4000	3600
42	G	CNTS/MIN	4000	4200	4000	4500	4000	4000	3800
48	H	CNTS/MIN	3600	3900	4000	4000 -	4300	4000	3400
54	1	CNTS/MIN	3400	3700	4000	3300	4000	4000	3400
60	· J	CNTS/MIN	4000	3800	4000	4000	3500	3200	3800
66	K	CNTS/MIN	4000	4000	4000	4000	3600	4200	3800
72	' L	CHTS/HIN	3800	3700	4000	4300	3800	4400	4000
78	М	CNTS/MIN	3700	3700	4000	4300	3800	4400	4000
84	¹ N	CNTS/MIN	3700	3700	4000	4300	3700	4400	4200
90	0	CNTS/MIN	3500	3800	4000 ·	4000	3800	4200	4000
96	P	CNTS/MIN	3600	3700	3100	4000	4000	4000	4200
102	Q	CNTS/MIN	3400	3700	3400	4000	4000	4200	4000
108	R	CNTS/MIN	3400	3700	4000	4000 -	4000	4000	WATER
114	S	CHTS/MIN	3200	3600	4000	3300	3300	4000	
120	Ţ	CNTS/MIN	3500	3300	3600	3600	3600	WATER	
126	u	CHTS/MIN	3400	3200	3700	3900	3900		
132		CHTS/MIN	3400	3000	3400	3900	3900	1	
138	W	CNTS/MIN	3500	3000	3600	3700	3700	,	
144	X	CNTS/MIN	3600	3000	3600	3700	3700		
150	Y	CNTS/MIN		3000	WATER .	WATER	WATER		
156		CNTS/MIN	3300	3000	ì	· ·		l	
162	AA	CHTS/MIN	WATER	3100				[
168		CHTS/MIN	•	3100	1				
174	AC	CHTS/MIN	1	WATER	l	`	ļ	{	

Readings are in gross counts per minute without background subtracted.

Table 8 Volumes & Preservatives Water Samples

Parameters	No.	Size	Туре	Preserv
VOAs	2	40 ml	glass	HC1
Semivolatiles	1	2 liter	amber glass	none
Pesticides/PCBs	1.	1 liter	amber glass	none
Herbicides	1	1 liter	amber glass	none
Metals	1	250 ml	polyethylene	HNO ₃
Cyanide	1	500 ml	polyethylene	NaOH
Radiologic (Filtered)	1	4 liter	plastic	HNO ₃
Radiologic (Unfiltered)	1	4 liter	plastic	HNO3

Table 9
Organic & Inorganic Data Summary
Vater Samples

	ARAMETER LINETS MV-101 MV-102 MV-103 MV-104 MV-105 MV-106 MV-107 MV-108 MV-109 MV-1090 MV-110											
PARAMETER	UNITS	MV-101	MV-102	MV-103	MW-104	MV-105	MV-106	MV-107	MW-108	MW-109	MV-109D	MV-110
Туре		inv	inv	inv.	inv	inv	inv	inv	102	102	102	rinse
Laboratory		SW	SV	sw	sv	SV .	SW	SW	SW	EEI	EEI	SW
VOCs (selected)						<u></u>						,
Methylene Chloride	ppb	18 B	16 B	26 B	1 JB	18 8	19 8	16 B	15 B	ND	ND	16 B
Acetone	ppb	5 J	ND	17 B	5 JB	6 J	4 3	3.1	ND	ND	ND	4 JB
1-1 Dichloroethane	ppb	ND	3 /	ND	ND	ND	ND	ND	ND_	6	ND	ND .
1-1 Dichloroethene	ppb	ND	ND	ND	ND ·	ND	ND	ND	3 J	ND	ND	ND
Toluene	ppb	ND	ND	8	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene	ppb	ND	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
Xyl ene	ppb	ND_	ND	10	ND	ND	ND	ND	ND	ND	ND	ND
Semivolatiles (selected)]	l. 			<u> </u>	l		<u> </u>	
Di-ethylphthalate	ppb	ND	ND	ND :	ND	ND	ND	ND	ND	ND	ND	8 J
Bis(2-ethylhexyl)phthalate	ppb	ND	2 JB	ND	ND	2 J	27	ND	ND	ND	14	ND
Chrysene	ppb	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND .
Pesticides/PCBs	ppb	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND
Herbicides	ppb	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND_
Metals (selected)												
Antimony	ppb	ND	ND	34.5	ND	ND	44.7	33.1	34.5	ND	ND	ND
Arsenic	ppb	ND	ND	ND	ND	ND	ND	ND	ND	3.1	2.5	ND
Copper	ppb	152	326	43	131	73	80	62	81	ND	ND	102
Mercury	ppb	ND	ND	ND	ND	ND	ND	ND	ND	0.48	ND	ND
Nickel	ppb	ND	13.8	ND .	ND	ND	ND	10.9	14	ND	ND .	ND
Selenium	ppto	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	ND:
Silver	ppb	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND
Zinc	ppb	102	52.8	34.1	40.7	489	56.4	43	44.5	ND	ND	40.5
Cyanide	ppm	ND	ND	ND	ND	NĎ	ND	ND	ND	ND	ND	ŅD

Table 10A Radiologic Data Summery Water Samples

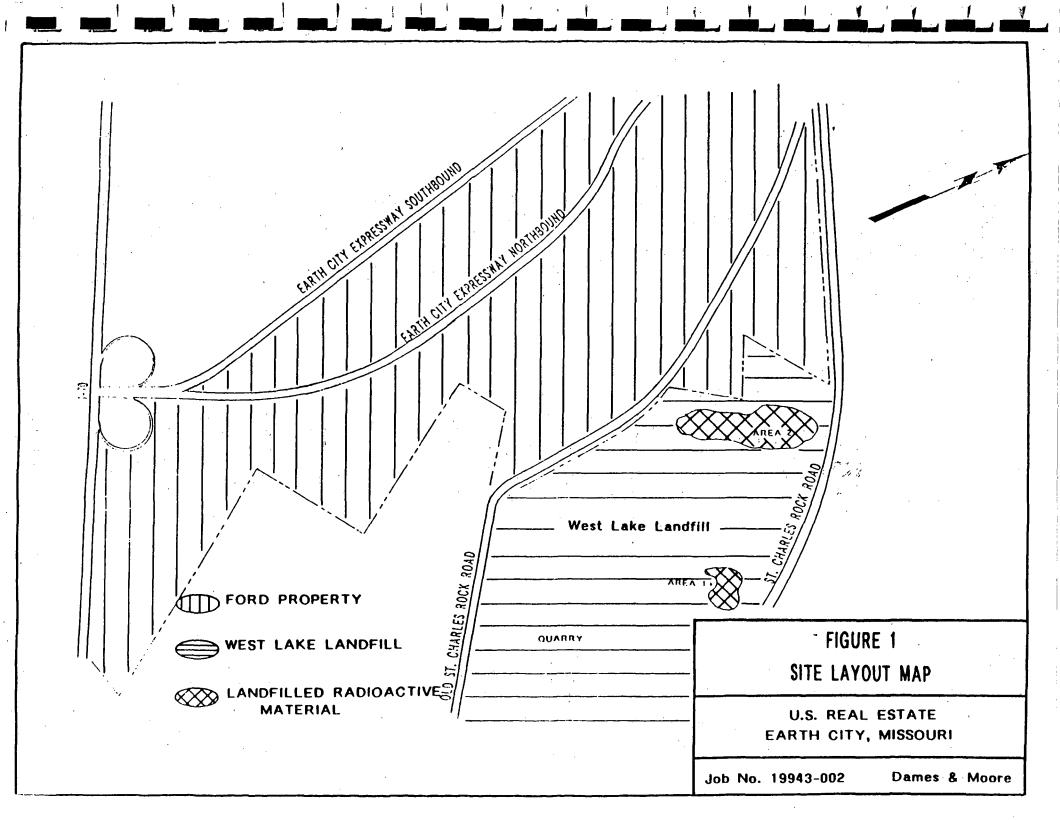
Parameter	Units	MV101-U	MW101-F	MW102-U	MW102-F	MW103-U	MV103-F
Туре		investigative	investigative	investigative	investigative	investigative	investigative
		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
Laboratory		1TC	110	1TC	110	170	110
Gross Alpha	pCi/l	< 10.0	< 7.7	< 8.1	< 2.3	17.2 +/- 9.6	< 7.0
Gross Beta	pCi/l	24.1 +/- 8.4	9,5 +/- 6.3	7.1 +/- 5.5	< 8.4	23.4 +/- 10.1	<13.4
Uranium-234	pCi/l	9.1 +/- 1.8	1.3 +/- 0.3	1.4 +/- 0.4	2.4 +/- 0.6	1.3 +/- 0.2	5.1 +/- 0.9
Uranium 235/236	pCi/l	1.4 +/- 0.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Uranium 238	pCi/l	8.6 +/- 1.7	< 1.0	1.3 +/- 0.4	1.6 +/- 0.5	1.2 +/- 0.2	3.6 +/- 0.7
Thorium 230	pCi/l	1.0 +/- 0.4	< 1.0	< 1.0	< 1.0	1.2 +/- 0.5	1.6 +/- 0.5
Thorium-232	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Potessium-40	pCi/l	<130	<160	<140	<180	<150	<180
Cesium-137	pCi/l	< 20	< 20	< 20	< 20	< 20	< 20
Radium-226	pCi/i	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Radium-228	pCi/l	< 3.ò	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

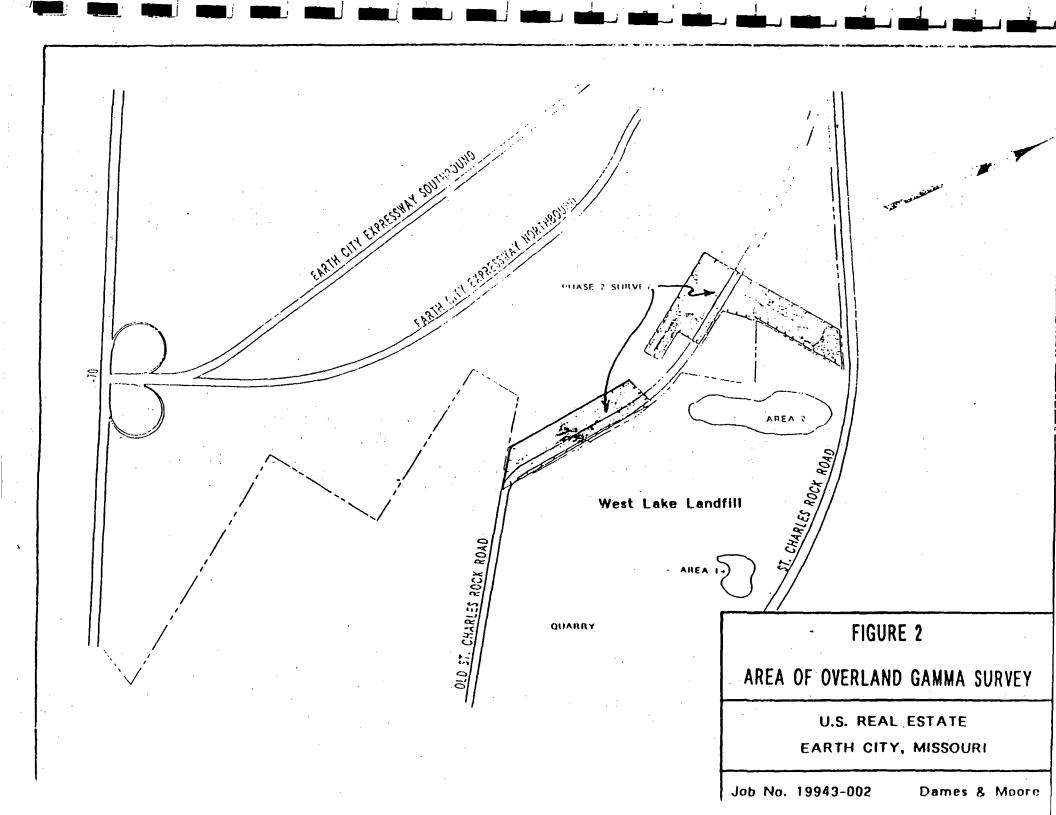
Table 108 Radiologic Data Summery Water Samples

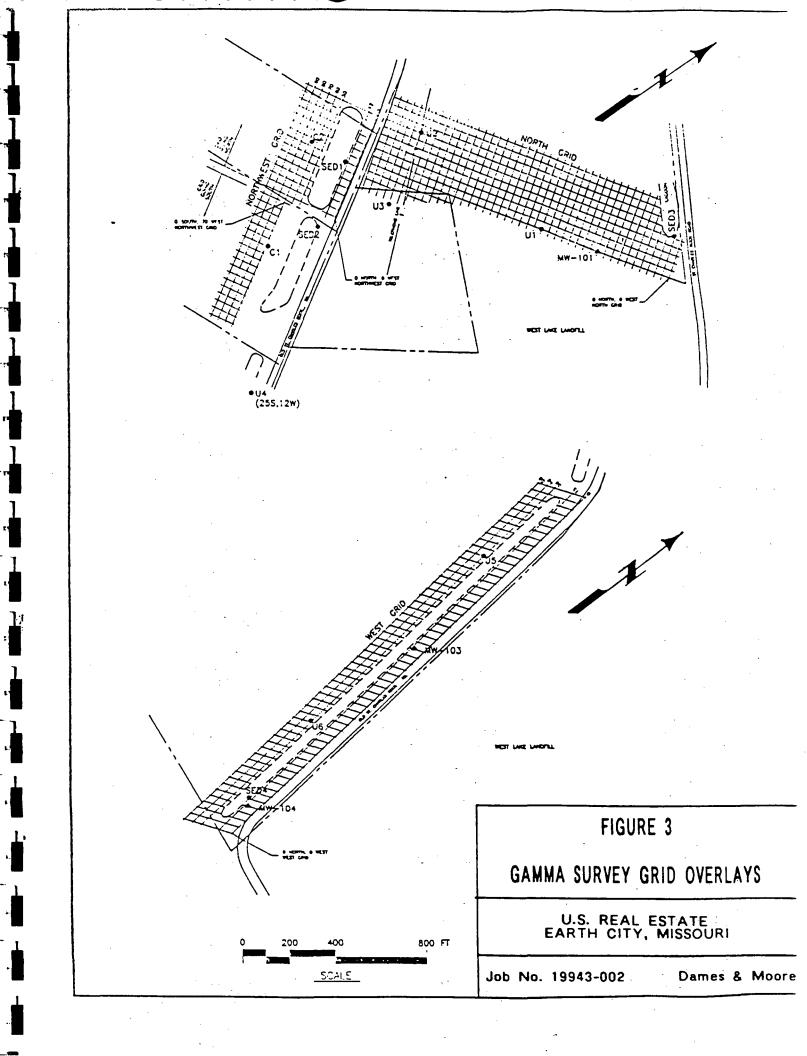
Parameter	Units	MV104-U	MW104-F	MW105-U	. MW105-F	MW106-U	MW106-F
Туре		investigative	investigative	investigative	investigative	investigative	investigative
		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
Laboratory		ITC	110	110	ITC	ITC	ITC
Gross Alpha	pCi/l	11.4 +/- 7.4	< 2.0	16.9 +/- 8.3	< 10.1	101 +/- 23	< 10.2
Gross Beta	pCi/L	18.7 +/- 7.4	< 8.3	14.5 +/- 9.1	7.32 +/- 5.6	29.5 +/- 12.2	< 16.0
Uranium-234	pCi/l	3.8 +/- 0.7	2.0 +/- 0.5	< 1.0	1.3 +/- 0.3	2.2 +/- 0.5	3.8 +/- 0.6
Uranium 235/236	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vranium 238	pCi/l	2.7 +/- 0.6	1.1 +/- 0.4	< 1.0	< 1.0	1.4 +/- 0.4	2.7 +/- 0.5
Thorium 230	pCi/l	2.0 +/- 0.6	< 1.0	< 1.0	< 1.0	4.5 +/- 1.2	< 1.0
Thorium-232	pCi/l	1.5 +/- 0.6	< 1.0	< 1.0	< 1.0	. 6.1 +/- 1.5	< 1.0
Potassium 40	pCi/l	<140	104 +/- 60	145 +/- 74	<140	283 +/- 114	<140
Cesium-137	pCi/l	< 20	< 20	< 20	< 20	< 20	< 20
Radium-226	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	1.4 +/- 0.3	1.1 +/- 0.3
Radium-228	pCi/t	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

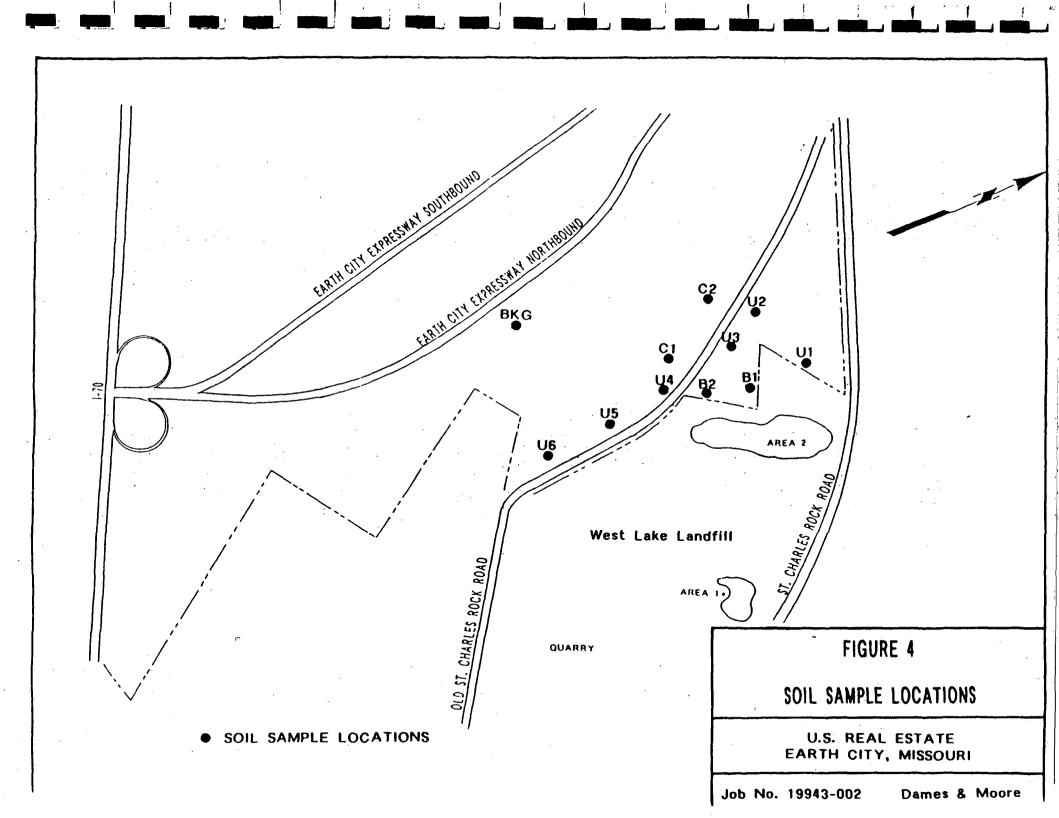
Table 10C Radiologic Data Summery Water Samples

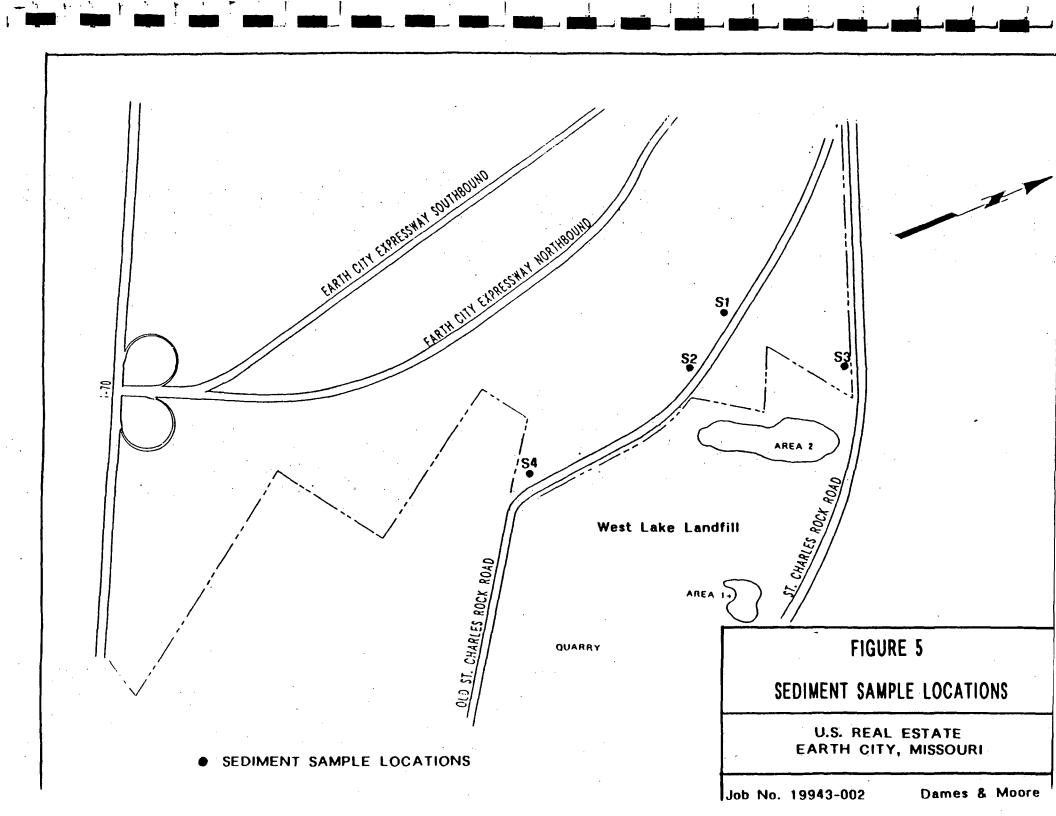
Parameter	Units	MV107-U	MW107-F	พม108-บ	MW108-F	MV109-U	MV109-F
Туре		investigative	investigative	dupl. MW102-U	dupl. MW102-F	split MW102-U	split MW102-F
		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
Laboratory		ITC	110	ITC	ITC	CEP	СЕР
Gross Alpha	pC1/l	202 +/- 36	< 10	< 7.5	< 10.6	< 2.0	< 2.0
Gross Beta	pCi/l	17.7 +/- 11.0	< 9.3	< 10.3	< 8.4	7 +/- 3	< 3
Uranium-234	pCi/l	< 1.0	1.6 +/- 0.4	2.2 +/- 0.5	3.6 +/- 0.6	< 0.6	< 0.6
Uranium 235/236	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	< 0.6	< 0.6
Uranium 238	pC1/L	< 1.0	1.2 +/- 0.3	1.7 +/- 0.4	2.9 +/- 0.5	< 0.6	< 0.6
Thorium 230	pCi/l	< 1.0	< 1.0	1.6 +/- 0.6	< 1.0	< 0.6	< 0.6
Thorium-232	pCi/l	< 1.0	< 1.0	< 1.0	< 1.0	< 0.6	< 0.6
Potassium-40	pCi/l	<180	<180	<190	<150	< 5	< 5
Cesium-137	pCi/l	< 20	< 20	< 20	< 20	11.0 +/- 0.8	< 5
Radium-226	pCi/L	< 1.0	< 1.0	< 1.0	< 1.0	1.5 +/- 1.0	< 0.6
Radium-228	pCi/l	< 3.0	< 3.0	< 3.0	< 3.0	< 1	< 1

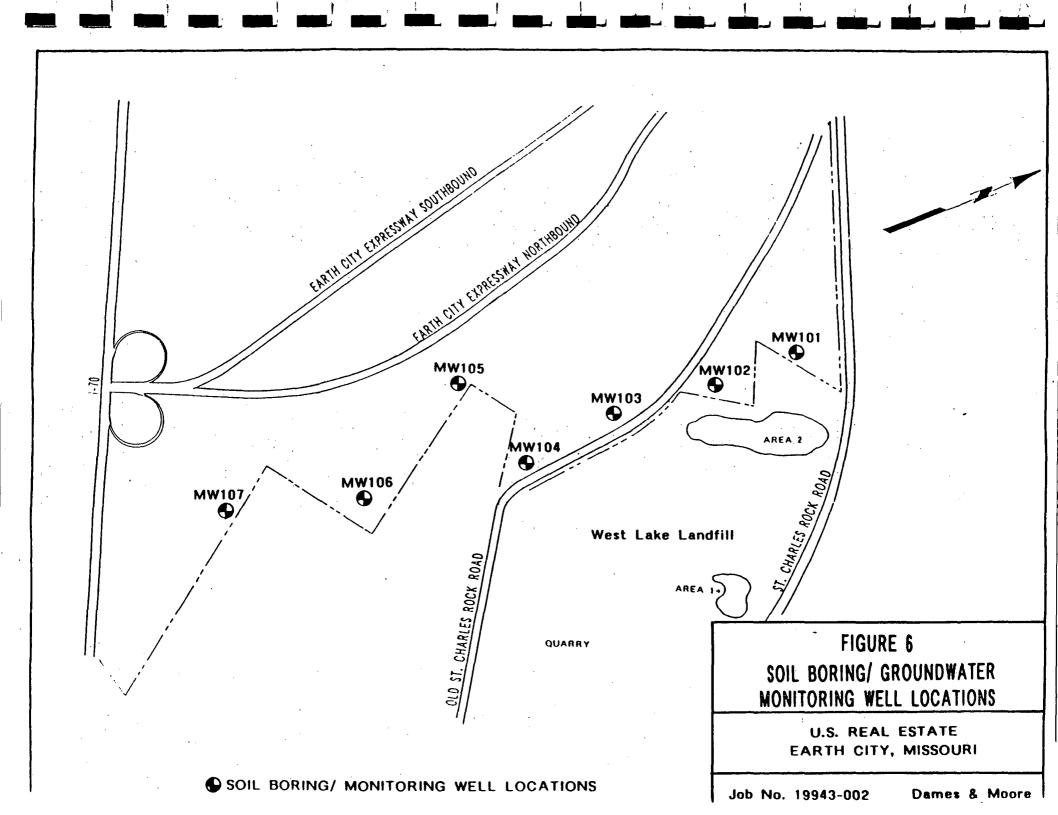

Table 10D Radiologic Data Summery Water Samples

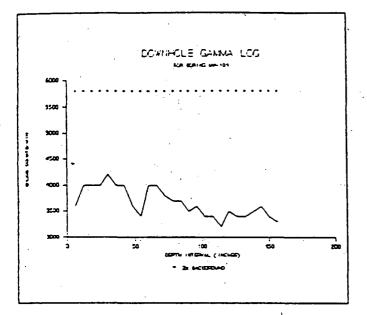

Parameter	Units	Mv110-U	MV110-F		WAT		
Туре		rinse	rinse		soil rinse		
		Unfiltered	Filtered			·	
Laboratory		170	170		170		
Gross Alpha	pCi/l	< 1.0	< 1.0	<u> </u>	ļ		
Gross Beta	pCi/l	< 4.0	< 4.0	<u> </u>	<u> </u>		
Uranium-234	pCi/L	< 1.0	< 1.0		<u> </u>		
Uranium 235/236	pCI/I	< 1.0	< 1.0	<u> </u>	L		
Uranium 238	pCi/l	< 1.0	< 1.0		<u> </u>		
Thorium 230	pCi/l	< 1.0	< 1.0			<u> </u>	
Thorium-232	pCi/l	< 1.0	< 1.0				
Potassium-40	pCi/l	<100	<190	<u> </u>			· · · · · · · · · · · · · · · · · · ·
Cesium-137	pCi/l	< 20	< 20				<u> </u>
Radium-226	pCi/l	< 1.0	< 1.0				
Radium-228	pCi/l	< 3.0	< 3.0				

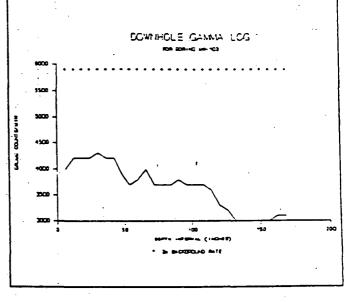

TABLE 11
SAMPLE REANALYSIS DATA


Sample ID	Туре	Parameter(s) Reanalyzed	Date	Results ± 2G (units)
S4	Sediment	Gross alpha	5/25/90	19.3 <u>+</u> 8.6 (pCi/g)
B1A	Soil	Gross alpha Gross beta Thorium-230	5/25/90 5/25/90 6/07/90	1140 ± 240 (pCi/g) 250 ± 53 (pCi/g) 1750 ± 360 (pCi/g)
B2A	Soil	Gross alpha Gross beta Thorium-230 Radium-226 Radium-228	5/25/90 5/25/90 6/07/90 5/25/90 5/25/90	4100 ± 830 (pCi/g) 627 ± 129 (pCi/g) 3530 ± 970 (pCi/g) 89.5 ± 4.7 (pCi/g) < 1.16 (pCi/g)
MW106-U	Groundwater	Gross alpha	5/25/90	307 ± 133 (pCi/g)


D&M Job No. 19943-002-045 June 14, 1990







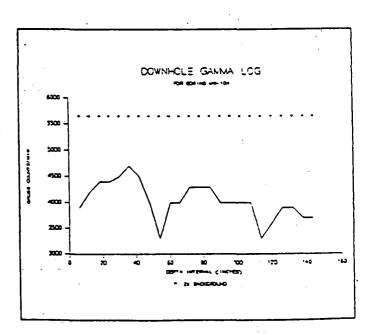

FIGURE 7-101

FIGURE 7-102

FIGURE 7-103

FIGURE 7-104

FIGURE 7

DOWNHOLE GAMMA RADIATION PLOTS

U.S. REAL ESTATE
EARTH CITY, MISSOURI

Job No. 19943-002

Dames & Moorr

APPENDIX A Certificates of Calibration

ICRON CORPORATION

12345 KINSMAN ROAD, NEWBURY, OHIO 44065 (216) 564-2251 telex 980474

CERTIFICATE OF INSTRUMENT CALIBRATION

CUSTOMER:	DAMES & MOORE	Q#	<u>40040</u>
	micro rem		A880N
INSTRUMENT 1	MODEL:	SERIAL #	
	CALIBRATION DATA		
·			•

RANGE	EXPOSURE RATE	INST. READING	EXPOSURE RATE	INST. READING
X1000	160 mR/h	160	40 mR/h	40
X100	16 mR/h	16	4 mR/h	4
X10	1.6 mR/h	1.6	400 uR/h	400
X1	160 uR/h	160	40 uR/h	40
X0.1	16 uR/h	16		

THE Cs-137 1 Ci SOURCE USED FOR THIS CALIBRATION HAS A CERTIFICATE STATING ITS TRACEABILITY TO N.B.S. (N.I.S.T.) STANDARDS.

INSTRUMENT CALIBRATED WITH A CS-137 GAMMA SOURCE USING A CONVERSION FACTOR OF 1 urem/h

1 uR/h

ICRON CORPORATION

12345 KINSMAN ROAD, NEWBURY, OHIO 44065 (216) 564-2251 telex 980474

CERTIFICATE OF INSTRUMENT CALIBRATION

CLICTOMED.	DAI	MES & MOORE		Q# <u>40040</u>
CUSTOMER:—		micro rem		A882N
INSTRUMENT M	MODEL:		SERIA	L. #
	c	ALIBRATION DATE	A	
RANGE	EXPOSURE RATE	INST. READING	EXPOSURE RATE	INST. READING
_ X1000	160 mR/h	160	40 mR/h	40
X100	16 mR/h	16	4 mR/h	3.9
X10	1.6 mR/h	1.6	400 uR/h	400
X1	160 uR/h	160	40 uR/h	40

THE Cs-137 1 Ci SOURCE USED FOR THIS CALIBRATION HAS A CERTIFICATE STATING ITS TRACEABILITY TO N.B.S. (N.I.S.T.) STANDARDS.

16

INSTRUMENT CALIBRATED WITH A CS-137 GAMMA SOURCE USING A CONVERSION FACTOR OF 1 urem/h

1 uR/h

X0.1

OTHER CALIBRATIONS AVAILABLE UPON REQUEST.

16 uR/h

CALIBRATED BY: Phonoa C Lamas DATE: 1-18-90

APPENDIX B
Chain-of-Custody Records

77c

314-993-45-99

Sample	Source	& Client	Fo	IRD US	REAL	C E5	7ATE		Flo	ld Personnel (SI	gnature)
Project	Tille	GART	IN C	177			Job No. 1999	73-00	2			
Dalo	.Tlmo	Samı I.D. I	nlo No.	Sámple Type •	No. Contai		Sampling S	Sito		Remark	. S	
4/02		51		Sadiment	1					D-6"		
		. 5.2	,	Sed	<u> </u>					>-C		
		53		Sed			St. Clas Rock	Rd	<u>ک اا</u>	Ī- <u>C</u>		
		.54		sed	,		SW End		0	<i>6"</i>		
		CI		Soil - COMP					_0-	•		,
		CZ		Soil comp		·			0	-6		••••
		UB-1		301			ON/18W		_	·	,	
		UB-2		50:1			N7 W37	·	_		· ·	
<u> </u>		UB-3		50:1								
		UB-4		soil			12W/2505		_	<u> </u>		·.
		UB-5		50:1	1		44UN /36W		_∭	· · · · · · · · · · · · · · · · · · ·		 ;
		UB-6	·	50:1			170N/36W	<u> </u>	_			
												
		/							_	<u> </u>		
Δ	1											,
ellmul (Signa Del 10	shed by ture)	1 Date 4/12	Time 5:00	Received b (Signature	•	llme	(Signature)	Date	Time	Received by: (Signature)	Date	Time
elinqui angle)	ohed by ture)	Date	Time	Received by (Signature		Time	(Signature)	Date	Time	Received by: (Signature)	Vate	Time
lliqul (Signa	shed by ture)	Data	Timo	Received by (Signature)	, , , , , , , , , , , , , , , , , , ,	Time	Relluquiahed by: (Signature)	Date	Time	Roceived by: (Signature)	Date	Tima
			l						l			·

292

PUPINGT J, DAUID 314-993-4599

Sample	e Source	& Client	Fo	PD US 1	Parl Es	126			Flo	d Personnel (SI	gna lur e)
Projec	t Title	Bant	Cit	1	•		Job No. 15943	-00z	_			
Dalo	.Tlmo	Sam I.D.	ple No. :	Sample Type	No. Contai		Sampling S	Sito		Remark	S	
4/12		B1-	Δ	5011	1		Area 1		0	- 6		
		BI-B	<u> </u>	50:1					<u>o</u>	٠.٤		
		BI-C	· 	50:1					6-	12	·	
		B2-A	-	50.1			Arex 2		0	C		
		B2-T	}.	50:1					0	<u> </u>		•
		Ba-0		50:1	/		1		6-1	٠		٠.٠
		BKG		soil	,				_	17		
<u> </u>		WAT		water								
·												
-1-1		<u> </u>							7			·.
			\						_ \			
[7					•	_ _			· ·
 -			7	/		·		-	_			
]				/		-∦			
	لجيج		ليب			, ,		,	<u> </u>		 	,
(Sign	ished by ature) 1 P.M	1/	71ma	Received (Signatur	, ,	Time	(Signature)	Date	Time	Received by: (Signature)	Date.	Time
•	laked by	Date	Time	Received		Time	Relinquished by t	Date	Time	Received by:	Date	Time
(SIgn	ature)			. (Signature	2)	1	(Signature)			(Signature)	,	
	ished by sture)	Data	Timo	Received 1 (Signature		Time	Relinquished by: (Signsture)	Date	Time	Received by: (Signature)	Date	Time

111

Dave Puringto 314-993-4599

Southwest

.21

Samol	o Sourco	& Client	·	RP US	Rock	Es-	h Ce		Floid	l Personnel (Si	gnature)
_ _	t Tille						Job No. / 954	3-002	_			• •
Daló	Timo	Samı I.D. İ	olo .	Sample	No. Conta	ol Inors	Sampling S			Remark	s	
4/12		BKG		Soi 1	3				7	PH, Semi Y, Pest,	Hab, M	et CA
		_54		sedimi	3				_		<u> </u>	
· .		_53		sedini		<u> </u>			_			
		Comp	٠ 4	50:1	3				_			,
		Comp	, (50:1	3		-		_			·
				- <u></u> -					_	• •		·
			4					· · · · · · · · · · · · · · · · · · ·	_		·	
-					·				_		·	:
1-1		/				/ :			-			<u> </u>
-{}	<u>-</u>]	/			· / · ·	<u>, </u>	-		-	/		•
		<u> </u>			-				-			
	-/-				/				 			
									-			<u>_</u>
							-	•	-	·	•	<u></u>
	Lahed by	1 Date	Time	Received	byı Date	Time	Relinquished by:	Date	Time	Received by:	Date	Time
(Sign	ature)	dia	5:00	(Signatur	e)	"	(Signatura)		Ì	(Signature)		-
Del	Ph	4/12						.		·	ł	<u> </u>
	ished by sture)	Date	Timo	Received (Signature		Time	Relinquinhed by: (Signature)	Date	Time	Neceived by: (Signature)	Date	Time
(2181	acui,e,		. ,	· (arkment	-		(arkunrare)			(orgunerary)		
e l l iviju	telied by	Date	Timo	hecelved 1	by i Data	Time	Relliquinhed by 1	Date	Time	Received by:	Date	Time
	ature)	1.		(Signature	, ,		(Signature)			(Signature)		
										.~		

191 Dave Purington 314-993-4599

CEP

Sample	o Source	& Client	F	ORD U	5 Rec	l b	strte		Fle	ld Parsonnel (S	igna lure)
Projec	:I Tille	Earth		Ly - Phas	· IT		Job No. 1974	3-002				
Date Time Sample I.D. No.		Sample No. of Containers			Sampling Site			Nemarks				
4/12		BIA		soil	1)-6 ^{';}		
4/12	BZA			soil /						-6 *	•	
			·						= =			
										/		· ·
								 -		/···	·	·.,
				/ -								· · · · · ·
			_/							,		
	}	\	/-			<u> </u>	\ <u> </u>		4-			••
						· · · · · · · · · · · · · · · · · · ·			_ -			· · · ·
												<u>.</u>
		 					_	- 	∸∥			
	taked by ature)	1 Vaca	Time 5:00	Received (Signature		Time		Date	Time	Received by: (Signature)	Date	Time
elinquished by (Signature)		Date	Time	Received l (Signature		Time	Relinquished by t (Signsture)	Date	Time	Received by: (Signature)	Vate	Time
ellimulated by: Date Ti		Time	Received in (Signature		Time	Relinquished by: (Signsture)	Date	Time	Received by: (Signature)	Date	Time	

314-993-4599

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

TTC

Field Personnel (Signature)	Fle	!								& Client	Source 8	Sampl	
		•		Job No.		•					Tille	Projec	
Remarks		Sampling-Slie				Sample No. of Containers		Date Time Sample I.D. No.					
Analyze for parameter	A		4.25					water	105U	nw 1	12:15	4/1/10 12:	
discussed wil						1			MW 105F		12:15	1	
Dovid Doolog							_}	/	16U	nw 10	11:00 /	-	
Donore Moure Buffallo, 117								l	MW106F			11	
Buffello, My										MW 1074		-	
			<u>L</u>				_	<u> </u>	7F	$n\omega / c$	9:00	<u>U </u>	
	_						-						
							-				·		
									·				
		• .				 			[
	-				····		-						
•	7			'- 			-						
Received by: Date Ti	Time	Date		lelingulaho (Signatu	Time	Date		Received (Signatur	Time	Date	shed by:	lingu (Sign	
e Received by: Date Ti (Signature)	Time	Date		clinquishe (Signatur	Time	Date	-	Received (Signatur	Tima	Date	shed by:	lingu (Sign	
e Received by: Date Tic (Signature)	Time	Date		clinquiole (Signatur	Time	Date		Received (Signature	Time	Date	Blied by:	llivju (Sign	

314 793-4599 Druid Purington

2 60x05)

DAME

ITC Alla Bill Commois

16		0.0111			- CONL O		-Or-Custobr			ld Personnel (S	lanature	1
/		& Client		erd			Job No.		''		gilatore	,
Dale	Date Time Sample I.D. No.		Sample Type	No. Conta	of Iners	Committee Oliv			Remarks			
4-12	9:00	MWIIC	u	Water 1					卫	-diological	An.G	راير
	9:00	MWIIOF		l						Nes discussion w		
1	10:00	MW1026							_ "	Devid Doole		
	10:00	U MWIOZF								DeM, Boffello NY		
	10:30 MW108a								·	·	· ·	
	10:30 Mas 108F						_		_ _	····		· · ·
	13:30	MWIC	34									<u> </u>
		MUSIC										
	14.30	MWIC					_					
	14:30 MW104F			<u> </u>							·	<u> </u>
V							7	\				
 }									_ _			
1-/	MUIOIF											
<u> </u>												
		mula	nu							·		
	pished by R.A.	Date 4/17	Time S.W	Received (Signatur	,	Time	Relinquished by: (Signature)	Date	Tima	Received by: (Signature)	Date .	Time
	Ished by	Date	Time	Received	· •	Time	Relliquished byt	Date	Time	Received by:	Date	Time
(Sign	ature)		} .	(Signatur	c)		(Signatura)			(Signature)		
•	lahed by	Date	Time	Received		Time		Date	Time	Received bys	Dote	Time
(31811	atule)			(Signature			(Signature)			(Signature)		·

David Poulson (po

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

(prop osl 2095)

AD Sollwarf

Fleld Personnel (Signature) Sample Source & Client Ford 19943-007 Job No. Project Title Sample No. of Sample Date -Sampling-Site-Remarks .TIme Typo Containers 1.D. No. ' Droservi. Lue Water 2 4000 VOA 4-162 2:30 1101 MW101 · 2,0 50000 Marc 2-12 Mole NA GII 1-500.W 111003 - 250ml netel -401R 1101 12:15 MW/05 UOA 1 ONR 2-18 More 500ml 10,011 .. 2 52 w (111002 Relinguished by: Time Relinguished by Date Received by Date Time Received by: Data Time Date Tlac (Signature) (Signature) (Signature) (Signature) 5.20 Relinguished by Date Tima Received by Date Time Relinguished byt Date Time Received by: Date Time (Signature) (Signature) (Signature) (Signature) Relliviul Blied by 1 Time Relingulated by t Date Date Timo Rucelved by: Time Received by: Dote Time Dato (Signature) (Signature) (Signature) (Signature)

002

Sample	s Source	& Client	<u> </u>						Fle	ld Personnel (S	ignatur	<u> </u>
Projec	1 Tille						Job No.	•				
Date	.Time	Samı I.D.		Sample Type	No. Conta		Sampling :	SIIe		Remark	(S	
4-167	11:00	nwi	06	water) -	York	1.10	′		JOA	-i	
			ب			28	MAR			seniualiti	· S	·
			•		2 -	1 K	Mille	·		her6/p25+		· · · · · · · · · · · · · · · · · · ·
					1.	SUNX	Na (114	·		<u>en' '</u>	· · · · · · · · · · · · · · · · · · ·	
	Jk	V			1.6	50mi	1-11XX	13		netses		
	9:00	MW 1	07		a. 4	Une	1.101			JOA		
	9:00				1-3	10	none	<u> </u>		enivoliti	<u>(es_</u>	·
11					2-	12	noice			herb/pst		
_					150	OMR	Na 0/1					i-
	4	V		4	1	50rue	HNO	3		No Els		· .
$ \Psi $		TR-				Kil	1101		-	2019	·····	
-/-	-			}						· · · · · · · · · · · · · · · · · · ·		
/ }									_			
<u> </u>									∦			
•	ished by ature)	Date	Time	Received (Signatur		Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
•	inhed by ature)	Date	Time	Received (Signatur	• 1	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
•	lahed by	Date	Time	Kacelved (Signature	•	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
						<u> </u>						

260xes 314-9934599

Sample	e Source	8	Client	· ;	For d'						Fle	ld Personnel (S	gnature)
Projec	I Tille							Job No.	1994	3-003	1			
Date	.Time		Samr I.D. I	ole Vo.	Sample Type	C	No. of ontainers	Sar	npling S	Site		Remark	S	
4-12	9:00	1	WIL	0	witi		7			,		Doci Seni, pes	1 heal	Nel.
	10:00	M	WIC	<u>, a</u>			7		· · · · · ·				<u> </u>	
	10:30	1	WIC	58			2						<u></u>	·
	13:30	n	ω_{l}	03			2				_			<u> </u>
	14:30	11	WI	24	4		2				_	<u> </u>		
U		7	R.	<u>) </u>	<u>U</u>	9	<u>)</u>				_ _(10c · ·		·
							 				_ _	~		
/		4				\				····-	4_			<u>. </u>
<u> </u>		1				17							$\langle \cdot \rangle$	
 }-		_			/	-\-			·		_		· · · · · · · · · · · · · · · · · · ·	7-
	/		 				/	_						 -
l			/	/-							_		,	
-1									 _		_			 :
<u> </u>		 -						_			-∥		<u> </u>	·
•	sture)	1	Date (//)	Time 570	Received (Signatur		ate Tim	Relinquis (Signate		Date	Time .	Received by: (Signature)	Date	Time
411	2 1.11	LI								<u> </u>			<u> </u>	- <u></u> -
•	lahéd by ature)	'	Date	Time	Received (Signatur		ate Tim	Relinquisi (Signati	•	Data	Time	Received by: (Signature)	Date	Time
														•
	Islied by	:	Date	Time	Kecelved (Signature		to Time	Relinquial (Signatu		Date	Time	Received by: (Signature)	Date	Time
· - · D · · ·		- 1			/ as Puarat		Ĭ	farRuard		1	* *	/orgunture/		

Sample	e Source	& Client							Fle	ld Personnel (S	ignature	<u>;)</u>
Projec	l Tille						Job No. 1994	3.00.	2			
Date	Tlme	Sam I.D.	ple No.	Sample Type	No. Conta		Sampling :			Remark	(S	
4-12	11:00	Mul	29	watu	7					C. Jeniual	1. KG2	
二丁						$\overline{}$			N 4	2037 416		
		<u> </u>			-					retels	· · · · ·	
		-							_ -			
								/				· · · · · · · · · · · · · · · · · · ·
	_/						\			· .		
	-											
			•									
					<u> </u>				-	·	•	· ·
	Ished by ature)	1./	Time SiZo	Received (Signatur Nahhuhuh	e)	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
. •	inhed by	Date	Time	Received (Signatur	by Date	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signsture)	Date	Time
	talied by:	Date	Time	Kacelved (Signature	· 1	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time

to CEP The San Moeiler

Sampl	e Source	& Client	F	ord					Flo	ld Personnel (S	ignature)
Projec	t Title	East		7. t.	•		Job No. 1994	13-002				
Date	.Tlme	Samı I.D.	ple No.	Sample Type	No. Conta		Sampling S	SIIe		Remark	S	•
4-17	1100	MWIC	29U	with	(١,			-€	or Rediologic	el	
4-17	11:00	MWIC		wati	,					And	نندر	
)	
		<u>,'</u>							1			•.•
									-			
						 			-	<u> </u>		
\angle			· .						-			
								•	-∥			·
								•				
	itshed by ature)	1 /	Time	Received (Signatur		Time	Relinquished by: (Signatura)	Date	Time	Received by: (Signature)	Date.	Time
•	ished by sture)	Date	Time	Received (Signatur	· .	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
	lohed by sture)	Date	Time	Received (Signature		Time	(Signature)	Date	Time	Received by: (Signature)	Date	Time
 			لــــا			L		<u> </u>	l		<u> </u>	

APPENDIX C Laboratory Analytical Data

CONTROLS for Environmental emination, ma.

BTATE ' '0/545-2188 ● FAX - 505-982-9

Dames & Moore 11701 Borman Drive, Suite 340 Saint Louis, MO 63146 Date Received: 04/18/90
Date Reported: 05/09/90
Work Order: 90-04-353

Category:

Attn: Dave Purington

Work ID: Environmental

P O # : 3

DAMES & MOORE
MAY 14 1990

Test		MW109U	MW109F	ST. LOUIS, MISSOURI
Gross Alpha	Units	04/17/90 11:00 <2	04/17/90 11:00 <2	
Gross Beta	pCi/liter	7+/ - 3	(3	
Cesium-137	pCi/liter pCi/liter	11. 0 0. 8	(5	
Potassium-40	pCi/liter		(5	
Radium-226 Radium-228	pCi/liter	1. 5+/-1. 0 <1	<0. 6 <1	
Thorium-228	pCi/liter	<0.6	(0. 6	
Thorium-230	pCi/liter	<0. b	<0. 6	
	pCi/liter			-

Controls for Environmental Political, political Political Controls Political

Page Received:	2 04/18/90	CEP, Inc. 05/09/90	REPORT 16: 18: 30	Work Order # 90-04-353 Continued From Above
Test	Units	MW109U	MW109F	
Thorium-232		04/17/90 11:00 <0.6	04/17/90 11:00 <0.6	
Uranium-234		(0. 6	<0. <i>b</i>	•
Uranium-235		<0. 6	<0.6	
_ Uranium-238	pCi/liter pCi/liter	(0.6	<0.6	

Certified By:

Page 1 Received:	04/13/90	ITRSL Oat	Ridge 05/18/9	REPORT 10 19:17:24	We We	ork Order # 50-04-049
REPORT	DAMES & MOORE	P	REPARED	IT/RADIOLOGICAL	SCIENCES LAB.	
	11701 BORMAN DRIVE			1550 BEAR CREEK		m
	SUITE 340			DAK RIDGE, TN 37		Lillin
	ST. LOUIS, NO 63146					CERTIFIED BY
ATTEN	DAVID PURINCTON		ATTEN	ERS		_
			PHDNE	615-482-9707		CONTACT JIH DILLARD
CLIENT	DAMES ST SAY	PLES 1			-	
COMPANY	DAMES & MOORE	<u>.</u>		*	* * * * * * * * * * * * * * * * * * * *	•
FACILITY	ST. LOUIS, NO					•
			HENDED T	O CORRECT UNITS	AND RESULTS.	U-ISO AND TH-230 AND
		Ī	11-232 HE	RE ALSO ADDED TO	COMPLETE RE	PORT.
MORK ID	WATER SAMPLE					
TAKEN						
TRANS					•	
TYPE						
P. O. 🛊	•					
INVOICE	under separate cover					
SAMPLE 01 HAT	IDENTIFICATION	CALPHA	CROSS AL	TEST CODES and PHA	NAMES used or	n this report
		CRETA	CROSS BE	TA		
		CS	CAPPIA SE	EC		
		RA226	RA-226			
		RA228	RA-228			
		TH228	TH-228			
		TH230	TH-230		·	
		TH232	TH-232			
			V-234		— <u>-</u> -	
			V-235/2	36		
		U238	U-238			

Appear of the same

MAY - = 1990

ST. LUUIS, MISSOURI

Page 2 Received: 04/13/90

ITRSL Cat Ridge REPORT
Results by Sample

Nort Order # 50-04-049

SAMPLE ID WAT

FRACTION 01A TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/12/90 Category

UNITS <u>BCi/1</u> WRTN 05/18/90

VERIFIED BY KDF

CANTA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1. 84E+2 C2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	2. 27E+1 4. 92E+0 2. 16E+0 46. 88E+0 1. 02E+1 41. 0E+0 8. 65E+0 6. 01E+1 41. 0E+0	0. 36E+1 2. 17E+0 0. 63E+0 0. 20E+1 1. 80E+0 0. 87E+1

Received:	: 04/13/90	KSC OUT I	05/18/9	0 19:17:24		WORK Under & SU-VY-VY7
REPORT	DAVIES & MOCRE	Pf	REPARED	IT/RADIOLDGICAL S	CIENCES LA	9.
	11701 BORMAN DRIVE		BY	1550 BEAR CREEK R	CAD	- m/
	SUITE 340	•		DAK RIDGE, TN 378		Ellin
	ST. LOUIS, NO 63146					CERTIFIED BY
	DAVID PURINCTON		ATTEN	ERS		
				615-482-9707		CONTACT JIH DILLARD
CLIENT	DAMES ST SAMPLE	ES 1				<u> </u>
	DAMES & MODRE					1
FACILITY	ST. LOUIS, NO			•		
		· A	MENDED T	D CORRECT UNITS A	ND RESULTS	U-ISO AND TH-230 AND
		Ī	H-232 HE	RE ALSO ADDED TO	COMPLETE R	EPORT.
WORK ID	HATER SAMPLE					
TAKEN						
TRANS		-				
TYPE			•			
P. O. #						
	under separate cover				•	
_					-	
SAMPLE 01 WAT	E IDENTIFICATION	CAI PHA	CROSS AL	TEST CODES and A	WES used	on this report
<u> </u>	-		CROSS BE		-	
			CANTA SP		• • •	
	•		RA-226		- . ·	
			RA-228		- .	
		TH228				
		TH230			-	
,		TH232		 :_	- , · · ·	
		<u>17232</u>			- .	
) <u> </u>	-	
			U-235/23	00	-	
		N538	<u>V-238</u>	······································	_	

Markey College

MAY - 1990

ST. LOUIS, MISSOURI

Page 2 Received: 04/13/90 ITRSL Cat Ridge REPORT
Results by Sample

Hork Order # 50-04-049

SAMPLE ID WAT

FRACTION 01A TEST CODE CS Date & Time Collected 04/12/90

Categor

UNITS <u>aCi/l</u> WRTN 05/18/90 VERIFIED BY KDF

CAPTIA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40	C1. 84E+2		CROSS ALPHA		0. 36E+1
CS-137	C2. 0E+1		GROSS BETA	4. 92E+0	2. 17E+0
•			RA-226	2 16E+0	0. 6 3E +0
			RA-228	6.88E+0	-
			U-234	1. 02E+1	0. 20E+1
			U-235/236	C1. 0E+0	
	-		V-238	8. 65E+0	1. BOE+0
			TH-230	6. 01E+1	0. B7E+1
			TH-232	<1.0E+0	

Received: 04/1B/90	05/18/90	15: 27: 40		NOTE UTSET & DO V4-VOJ
REPORT DAMES & MOORE	PREPARED IT	/RADIOLOGICAL	SCIENCES LA	B. .
TO 11701 BORMAN DRIVE		50 BEAR CREEK		
SUITE 340		K RIDGE TH 3		- Colley
ST. LOUIS, NO 63146				CERTIFIED BY
ATTEN DAVID PURINCTON	ATTEN ER	S .		
		5-482-9707		CONTACT JIH DILLARD
CLIENT DAMES ST SAMPLE				
COMPANY DAMES & MOORE				
FACILITY ST. LOUIS, MO	•			•
	AMENDED TD	INCLUDE U-TSO	TH-230, AND	TH-232 FOR ALL FRACTIONS.
	112325		· · · · · · · · · · · · · · · · · · ·	
HIRK ID HATER SAMPLES				
TAKEN				
TRAKS		٠		
TYPE				
P. O. #				
INVOICE under separate cover				
THANKE AUGEL SENDINGS COACL	_ _			
SAMPLE IDENTIFICATION	1	EST CORES and	NAMES nead	on this report
	CALPHA CROSS ALPH	A	144 TO 0348	ou ents repore
	CBETA CROSS BETA			•
	CS CAMMA SPEC			
	RA226 RA-226			
	RA228 RA-228			•
	TH228 TH-228	······································		
	TH230 TH-230			
	TH232 TH-232			
	V234 U-234			
	U235 U-235/236		 .	
		 		
	<u>U238 U-238 </u>			•
12 HH101U				

Page 2 Received: 04/18/90

ITRSL Dat Ridge REPORT Results by Sample

Hork Dreer # 50-04-065

SAMPLE ID MULLOU

FRACTION 01A TEST CODE GS Date & Time Collected 04/17/90

Category MA

UNITS pci/1 WRTN 05/18/90 VERIFIED BY RDJ

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	(1. 0E+2 (2. 0E+1		RA-228 U-234 U-235/236 U-238 TH-230	C4. 0E+0 C1. 0E+0 C3. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0	
			TH-232	C1. 0E+0	

SAMPLE ID MILIOF

FRACTION 02A TEST CODE 65
Date & Time Collected 04/17/90

UNITS <u>pCi/l</u> URTN 05/18/90

CANTA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-51CH
K-40	C1. 9E+2		GROSS ALPHA	C1. 0E+0	
CS-137	C2. 0E+1		GROSS BETA	<4. 0E+0	
		,	RA-226	C1. 0E+0	٠.
	•		RA-228	C3. 0E+0	
			U-234	C1. 0E+0	
	•		U-235/236	C1. 0E+0	•
			U-238	C1. 0E+0	
			TH-230	C1. 0E+0	
			TH-232	<1.0E+0	

Page 3 Received: 04/18/90

ITRSL Dat Ridge REPORT
Results by Sample

Hork Order # 50-04-065

SAMPLE ID MILIOZU

FRACTION OGA TEST CODE GS
Date & Time Collected 04/17/90

NAME CAMMA SPEC

UNITS aCi/1 MRTN 05/18/90

VERIFIED BY RDJ

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SIGNA
K-40 CS-137	<1. 4E+2 <2. 0E+1		CROSS ALPHA CROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	CB. 08E+0 7. 09E+0 C1. 0E+0 C3. 0E+0 1. 42E+0 C1. 0E+0 1. 30E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0	5. 46E+0 0. 39E+0 0. 36E+0

SAMPLE ID MI102F

FRACTION 04A TEST CODE 6S NAME CAMMA SPEC
Date & Time Collected 04/17/790 Catego

UNITS pCi/1 WRTN 05/18/90

CANTIA SPEC	RESULT	2-510M	OTHER	RESULT	2-SIGNA
K-40	(1. BÉ+2		OROSS ALPHA	(2. 26E+0	
CS-137	C2_0E+1		CROSS BETA	CB. 43E+0	
			RA-226	<1.0E+0	
•			RA-228	C3. 0E+0	
			U-234	2 43E+0	0. 57E+0
:			U-235/236	C1. 0E+0	
			V-238	1. 57E+0	0.45€+0
			TH-230	C1. 0E+0	
			TH-232	<1.0E+0	

Page 4 Received: 04/18/90

ITRSL Cat Ridge REPORT
Results by Sample

Hort Order # 50-04-065

SAMPLE ID MILIOBU

FRACTION 05A TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/17/90 Category NA

UNITS pCi/l WRTN 05/18/90 VERIFIED BY RDJ

CAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1. 9E+2 C2. 0E+1		OROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	C7. 50E+0 C1. 03E+1 C1. 0E+0 C3. 0E+0 2. 20E+0 C1. 0E+0 1. 67E+0 C1. 0E+0 C1. 0E+0	0. 47E+0 0. 40E+0 0. 61E+0

SAMPLE ID MM108F

FRACTION 06A TEST CODE GS Date & Time Collected 04/17/90

UNITS <u>BCi/l</u> WRTN 05/18/90

CANTIA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-SIGNA
K-40 CS-137	C1. 5E+2 C2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	C1. 06E+1 C8. 36E+0 C1. 0E+0 C3. 0E+0 3. 57E+0 C1. 0E+0 2. 93E+0 C1. 0E+0 C1. 0E+0	0. 62E+0 0. 54E+0

Page 5 Received: 04/18/90

ITRSL Dat Ridge REPORT
Results by Sample

Work Order # 50-04-065

SAMPLE ID MAIOGU

FRACTION OTA TEST CODE GS
Date & Time Collected 04/17/90

Category MA

UNITS PCI/1 WRTN 05/18/90 VERIFIED BY RDJ

CANNA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SICHA
K-40 CS-137	<1. 5E+2 <2. 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	1. 72E+1 2. 34E+1 (1. 0E+0 C3. 0E+0 1. 25E+1 (1. 0E+0 1. 23E+1 1. 22E+0 (1. 0E+0	0. 96E+1 1. 01E+1 0. 19E+1 0. 19E+1 0. 52E+0

SAMPLE ID MAIOSF

FRACTION OBA TEST CODE GS
Date & Time Collected 04/17/90

UNITS pCi/1 WRTN 05/18/90

CAPPLA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SIGMA
K-40	C1.8E+2		CROSS ALPHA	<7.00E+0	,
CS-137	C2_0E+1	,	CROSS BETA	(1.34E+1	
	•		RA-226	C1.0E+0	
			RA-228	C3. 0E+0	
			U-234	5. 10E+0	0. BSE+0
			U-235/236	<1.0E+0	
			V-238	3. 55E+0	0. 66E+0
	•		TH-230	1. 57E+0	0.45E+0
			TH-232	<1.0E+0	

Page 6 Received: 04/18/90

ITRSL Oak Ridge REPORT
Results by Sample

Mort Order # 50-04-065

SAPLE ID MILOAU

FRACTION 09A TEST CODE CS NAME CAMPA SPEC
Date & Time Collected 04/17/90 Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY ROJ

CANTIA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-SICHA
K-40	C1. 4E+2		CROSS ALPHA	1. 14E+1	0. 74E+1
CS-137	C2. 0E+1		GROSS BETA	1. 87E+1	0. 74 <u>E</u> +1
-			RA-226	<1.0E+0	
			RA-228	C3. 0E+0	ē ·
			U-234	3. 80E+0	0.73E+0
			U-235/236	C1. 0E+0	
			V-238	2.68E+0	0. 59E+0
	•		TH-230	2.00E+0	0. 65E+0
			TH-232	1. 47E+0	0. 55E+0

SAMPLE ID MAIO4F

FRACTION 10A TEST CODE GS NAME GAMMA SPEC
Date & Time Collected 04/17/90 Category

UNITS <u>pCi/I</u> WRTN 05/18/90

CANTA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-SIGNA
K-40 CS-137	1. 04E+2 (2. 0E+1	0. 60E+2	GROSS ALPHA GROSS BETA RA-226 RA-228 U-234	C2_0E+0 C8_3E+0 C1_0E+0 C3_0E+0 1_98E+0	0. 48E+0
			U-235/236 U-238 TH-230 TH-232	C1. 0E+0 1. 10E+0 C1. 0E+0 C1. 0E+0	0. 35E+0

Page 7 Received: 04/18/90

ITRSL Cat Ridge Reru Results by Sample REPORT

Work Order # 50-04-065

SAPLE ID MILOIF

FRACTION 11A TEST CODE CS NAME CANNA SPEC
Date & Time Collected 04/17/90 Category

Category NA

UNITS pci/1 MRTN 05/18/90 VERIFIED BY RDJ

CAPPIA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	C1, 6E+2 C2, 0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	(7. 7E+0 9. 52E+0 (1. 0E+0 02. 0E+0 1. 26E+0 (1. 0E+0 (1. 0E+0 (1. 0E+0 (1. 0E+0	6. 27E+0 0. 31E+0

SAMPLE ID MW101U

FRACTION 12A TEST CODE GS Date & Time Collected 04/17/90

UNITS OCI/L WRTN 05/18/90

CAPPIA SPEC	RESULT	2-Signa	OTHER	RESULT	2-Signa
K-40 CS-137	C1.3E+2 C2.0E+1	·	GROSS ALPHA GROSS BETA RA-226 RA-228	<1.0E+1 2.41E+1 <1.0E+0 <3.0E+0	0. 84E+1
			U-234 U-235/236 U-238 TH-230 TH-232	9. 06E+0 1. 37E+0 B. 64E+0 1. 02E+0 C1. 0E+0	1.75£+0 0.58£+0 1.69£+0 0.36£+0

ITRSL Cat Ridge REPT 05718/90 16:11:46 REPORT Page 1 Received: 04/17/90 Wort Order # 50-04-064 REPORT DAMES & MOORE PREPARED IT/RADIOLOGICAL SCIENCES LAB. BY 1550 BEAR CREEK ROAD TD 11701 BORMAN DRIVE SUITE 340 DAK RIDGE, TN 37831 ST. LOUIS, MO 63146 ATTEN DAVID PURINCTON ATTEN ERS PHINE 615-482-9707 CONTACT JIH DILLARD CLIENT DAMES ST SAMPLES 6 COMPANY DAMES & MOORE FACILITY ST. LOUIS, MO AMENDED TO INCLUDE U-ISO, TH-230 AND TH-232 ON ALL FRACTIONS AND TO CORRECT GROSS ALPHA AND GROSS BETA RESULTS FOR 05A. WORK ID WATER SAMPLES TAKEN TRANS TYPE P. Q. # INVOICE under separate cover SAMPLE IDENTIFICATION TEST CODES and NAMES used on this report CALPHA CROSS ALPHA 01 MH105U 02 HW105F CBETA CROSS BETA 03 MM106U CANNA SPEC 04 MH106F RA226 RA-226 05 MH107U RA228 RA-228 06 MJ107F TH228 TH-228 TH-230 TH230 TH-232 TH232 U-234 U234 U-235/236 U235

V-238

Page 2 Received: 04/17/90 ITRSL Dat Ridge REPORT
Results by Sample

Work Order # 50-04-064

SAPPLE ID MI105U

FRACTION 01A TEST CODE 65 Date & Time Collected 04/16/90

NAME CAMMA SPEC

Category NA

UNITS <u>pCi/1</u>
WRTN 05/18/90

VERIFIED BY KDF

CANTIA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-51CM
K-40 CS-137	1. 45E+2 C2. 0E+1	0. 74E+2	CROSS ALPHA CROSS BETA RA-226 RA-228 U-234 U-235/236 U-238 TH-230 TH-232	1. 69E+1 1. 45E+1 C1. 0E+0 C3. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0 C1. 0E+0	0. 83E+1 0. 91E+1

SAMPLE ID MH105F

FRACTION 02A TEST CODE 6S Date & Time Collected 04/15/90 NAME CANNA SPEC

Category M

UNITS pCi/L WRTN 05/18/90 VERIFIED BY KOF

CAMMA SPEC RESULT OTHER RESULT 2-SIGNA 2-SICHA K-40 **C1.4E+2** CROSS ALPHA C1. 01E+1 CS-137 CZ_0E+1 GROSS BETA 7.32E+0 5. 64E+0 C1. 0E+0 RA-226 RA-228 C3. 0E+0 U-234 1.33E+0 0.33E+0 U-235/236 C1.0E+0 U-238 **C1.0E+0** TH-230 <1.0E+0 TH-232 **<1.0E+0**

Page 3 Received: 04/17/90

ITRSL Oak Ridge REPORT
Results by Sample

Work Order # 50-04-064

SAPLE ID MI 106U

FRACTION OGA TEST CODE CS NAME CAMMA SPEC
Date & Time Collected 04/15/90 Category NA

UNITS pci/1 WRTN 05/18/90 VERIFIED BY KOF

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-Signa
K-40 CS-137	2.83E+2 C2.0E+1	1. 14E+2	CROSS ALPHA CROSS BETA RA-226 RA-228	2. 95E+1 1. 41E+0 CJ. 0E+0	0. 23E+2 1. 22E+1 0. 29E+0
			U-234 U-235/236 U-238 TH-230 TH-232	2. 18E+0 C1. 0E+0 1. 37E+0 4. 45E+0 6. 12E+0	0. 49E+0 0. 38E+0 1. 16E+0 1. 45E+0

SAMPLE ID MAIOSE

FRACTION 04A TEST CODE GS
Date & Time Collected 04/16/90

Category NA

UNITS <u>pCi/1</u> WRTN 05/18/90

VERIFIED BY KOF

CANTIA SPEC	RESULT	2-SICHA	THER	RESULT	2-SICHA
K-40 CS-137	<1. 4E+2 <2. 0E+1		GROSS ALPHA GROSS BETA RA-226	C1. 02E+1 C1. 60E+1 1. 05E+0	0. 25E+0
		•	RA-228	C3. 0E+0	V. 2.02 · V
			V-234 V-235/236	3. 81E+0 C1. 0E+0	0. 63E+0
			U-238	2. 65E+0	0. 49E+0
			TH-230	(1.0E+0	
			TH-232	C1.0E+0	

Page 4 Received: 04/17/90

ITRSL Oak Ridge REPO Results by Sample REPORT

Work Order # S0-04-064

SAMPLE ID MI107U

FRACTION 05A TEST CODE 6S NAME CAMPA SPEC
Date & Time Collected 04/15/90 Category NA

UNITS pCi/1 WRTN 05/18/90 VERIFIED BY KOF

CANNA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICHA
K-40 CS-137	<1.8E+2 <2.0E+1		GROSS ALPHA GROSS BETA RA-226 RA-228 U-234 U-235/236 U-238	_	1. 14E+1 1. 10E+1
	-		TH-230 TH-232	C1.0E+0 C1.0E+0	

SAMPLE ID MAIOTF

FRACTION 06A TEST CODE 6S NAME CAPPA SPEC
Date & Time Collected 04/16/90 Catego

UNITS pci/1 WRTH 05/18/90 VERIFIED BY KOF

CANTIA SPEC	RESULT	2-SICHA	OTHER	RESULT	2-SICTA
K-40 CS-137	<1.8E+2 <2.0E+1		GROSS ALPHA GROSS BETA RA-228 U-234 U-235/236 U-238 TH-230 TH-232	C1. 01E+1 C7. 2&E+0 C1. 0E+0 C3. 0E+0 1. 57E+0 C1. 0E+0 1. 24E+0 C1. 0E+0 C1. 0E+0	0. 39E+0 0. 34E+0

Page 1 Received:	: 04/13/90	05/31/	90 15:	REPUR 57: 35	IT		rk Order # 50-03-179 rk Not Complete
REPORT	DAMES & MOORE	PREPARED	IT/RA	DICLOCI	CAL SCIE	NCES LAB.	
TO	11701 BORMAN DRIVE	BY	1550	BEAR CR	EEK ROAD		$\sim 10^{-10}$
	SUITE 340	_	OAK R	IDGE, 1	N 37831		family willed
	ST. LOUIS, NO 63146	-					CERTIFIED BY
ATTEN	DAVID PURINGTON	ATTEN	ERS				
		PHONE	615-4	82-9 707	7		CONTACT JIM DILLARD
CLIENT	DAMES ST SAMPLES	}					
COMPANY	DAMES & MOORE	_					
FACILITY	ST. LOUIS, NO						
	-	- SAMP	LES BI	-A AND	B2-A WILL	L BE REPO	RTED AT A LATER DATE.
WORK ID	SOIL SAMPLES						
TAKEN		-					·
TRANS		-					
TYPE		•					
P. O. #		•					
	under separate cover	•					
SAMPLE	E IDENTIFICATION		TEST	CODES	and NAME	S used on	this report
01 B2-4		THA GROSS A	LPHA				
02 54	GBET	A CROSS B	ETA				•
03 B1-A	RA23	6 RA-226			<u> </u>		
	RAZ	8 RA-228					
	SPEC	SPECIAL	FORM	FOR REP	PORTING		
		8 TH-228			1.		
		× 51 224				τ.	

DAMES & MOORE

JUN 04 1990

ST. LOUIS. MISSOURI

ITORL DAK RIDGE

REPORT

Work Order # S0-05-179

Page 2 Received: 04/13/90

Results by Sample

SAPLE ID B2-A

FRACTION 01A TEST CODE SPEC NAME SPECIAL FORM FOR REPORTING Date & Time Collected 04/12/70 Category NA

PARAMETER	RESULT	2-SICHA ERROR	UNITS
CROSS ALPHA	4. 10E+3	0. 83E+3	pCi/g
CROSS BETA	6. 27E+2	1. 29E+2	pCi/g
RA-226	8. 95E+1	0. 47E+1	pCi/g
RA-228	<1.16E+0		pCi/g
TH-IST	•		

SAMPLE ID S4

FRACTION 02A TEST CODE SPEC NAME SPECIAL FORM FOR REPORTING Date & Time Collected 04/12/90 Category NA

PARAMETER

RESULT

2-SIGNA ERROR UNITS

CROSS ALPHA

1. 93E+1

0. BAE+1

pCi/g

Page 3 Received: 04/13/90

ITURL DAK RIDGE REPORT
Results by Sample

Work Order # S0-05-179

SAMPLE ID BI-A

FRACTION 03A TEST CODE SPEC Date & Time Collected 04/12/90

NAME SPECIAL FORM FOR REPORTING
Category NA

PARAMETER RESULT 2-SIGNA ERROR UNITS CROSS ALPHA 1.14E+3 0. 24E+3 pCi/g CROSS BETA 0.53E+2 2. 50E+2 pCi/g TH-150

Page 1 Received: 04/17/90	ITURL DAK RIDGE 05/31/	REPORT 90 15: 56: 12	Work Order \$ 50-05-190
REPORT DAMES & MOURE	PREPARED	IT/RADIOLOGICAL SCIENCES I	LAB.
TO 11701 BORMAN DRIVE		1550 BEAR CREEK ROAD	
SUITE 340	<u> </u>	DAK RIDGE, TN 37831	- Chilles
ST. LOUIS, MO 63146		· .	CERTIFIED BY
ATTEN DAVID PURINGTON	ATTEN		
	PHINE	615-482-9707	CONTACT JTM DILLARD
	MPLES 1	•	
COMPANY DAMES & MODRE	·		
FACILITY ST. LOUIS, MO	· ·		,
WORK ID WATER SAMPLE	·	:	
TAKEN		· .	
TRANS			
TYPE		•	
P.O. #			
INVOICE under separate cover		•	•
CAMBLE INCUTTETEATION		TEST SONCE and MANCE was	d on Abic manne
SAMPLE IDENTIFICATION OI NO 1060	CALPHA CROSS A	TEST CODES and NAMES used LPHA	o on tals report
		FORM FOR REPORTING	

Page 2 Received: 04/17/90 ITORL CLAN RIDGE REPORT
Results by Sample

Work Order # 50-05-180

SAMPLE ID MN 106U

FRACTION 01A TEST CODE SPEC NAME SPECIAL FORM FOR REPORTING Date & Time Collected 04/15/90 Category NA

PARAMETER

RESULT

2-SIGNA ERROR UNITS

1.33E+2

CROSS ALPHA

3. 07E+2

pCi/l

Consulting Engineers, Scientists and Analytical Services

1908 Innerbelt Business Center Drive St. Louis, Missouri 63114-5700 (314) 426-0880 Fax (314) 426-4212

REPORT OF ANALYSIS

CLIENT: Mr. Dave Purington

Dames & Moore

11960 Westline Ind. Drive

Suite 155

St. Louis, MO 63146

PROJ. #: 3500-00385

REPORT DATE:

May 10, 1990

SAMPLE ANALYZED:

One water sample analyzed

for the parameters

listed below.

DATE RECRIVED:

April 18, 1990

P.O. #1

Parameter	UNITS	, HW109	MW109 DUPLICATE
			
PHONITHA	(UG/L)	< 24	< 24
ARSENIC	(UG/L)	3.1	2.5
BERYLLIUM	(UG/L)	. < 3	<. 3
CADHIUM	(DG/L)	< 3	< 3
CHROHITH	(UG/L)	< 10	< 10
COPPER	(UG/L)	< 14	< 14
LEAD	(UG/L)	< 73	< 73
MERCURY	(DG/L)	0.48	-
NICKEL	(UG/L)	< 15	< 15
SILVER	(UG/L)	1.1	<1.0
SELENIUM	(UG/L)	1.3	<1.0.
THALLIUM	(UG/L)	<1.0	<1.0
ZINC	(UG/L)	< 16	< 16
Parameter	UNITS	HWI 09	
	•		
CYANIDE	(UG/L)	< 5	•

MOTE: See reverse side for "STANDARD CLAUSES."

APPROVED:

Lisa A. Teehy. Program Coordinator

DAMES & MOORE

MAY 14 1990

ST. LOUIS, MISSOURI

Twin City Testing Corporation

A member of the HIH group of companies

disk 87/bbg

REPORT OF ANALYSIS

CLIENT: Mr. Dave Purington

Dames & Moore

REPORT DATE: DATE RECEIVED: May 10, 1990 April 18, 1990

PROJ. #: 3500-00385

P.O. #:

						_
			DETECTION			MW109
PARAMETER		UNITS	LIMITS	BLANK	HW109	DUPLICATE
LINDANE		(UG/L)	0.002	<0.002	<0.002	<0.002
HEPTACHLOR		(UG/L)	0.003	<0.003	<0.003	<0.003
HEPTACHLOR EPOXIDE		(UG/L)	0.004	<0.004	<0.004	<0.004
endosulpan I		(UG/L)	0.005	<0.005	<0.005	<0.005
DIELDRIN		(UG/L)	0.006	<0.006	<0.006	<0.006
ENDOSULPAN II		(UG/L)	0.010	<0.010	<0.010	<0.010
4,4'-DDT	٠.	(DG/L)	0.015	<0.015	<0.015	<0.015
ENDRIN ALDEHYDE		(UG/L)	0.024	<0.024	<0.024	<0.024
METHOXYCHLOR	-	(UG/L)	0.063	<0.063	<0.063	<0.063
alpha-BHC		(UG/L)	0.002	<0.002	<0.002	<0.002
beta-BHC		(UG/L)	0.005	<0.005	<0.005	<0.005
delta-BHC		(UG/L)	0.001	<0.001	<0.001	<0.001
gamma-CHLORDANE		(UG/L)	0.003	<0.003	<0.003	<0.003
alpha-CHLORDANE		(UG/L)	0.003	<0.003	<0.003	<0.003
4,4'-DDE		(UG/L)	0.006	<0.006	<0.006	<0.006
ENDRIN		(UG/L)	0.016	<0.016	<0.016	<0.016
4,4'-DDD	-	(UG/L)	0.011	<0.011	<0.011	<0.011
endosulpan sulpate	N .	(UG/L)	0.022	<0.022	<0.022	<0.022
endrin ketone	•	(UG/L)	0.019	<0.019	<0.019	<0.019
AROCLOR-1016		(UG/L)	0.047	<0.047	<0.047	<0.047
AROCLOR-1260	,	(UG/L)	0.187	<0.187	<0.187	<0.187
AROCLOR-1221		(UG/L)	0.107	<0.107	<0.107	<0.107
AROCLOR-1232		(UG/L)	0.083	<0.083	<0.083	<0.083
AROCIOR-1242	•	(UG/L)	0.044	<0.044	<0.044	<0.044
AROCLOR-1254		(UG/L)	0.054	<0.054	<0.054	<0.054
AROCLOR-1248		(UG/L)	0.094	<0.094	<0.034	<0.094
ALDRIN		(UG/L)	0.003	<0.003	<0.003	<0.003
TOXAPHENE		(UG/L)	0.205	<0.205	<0.205	<0.205
	•					
			_			
	• :	DETRCTION			HW109	
PARAMETER	UNITS	LIMITS	BLANK	HW109	DUPLICATE	; —
2,4-D	(UG/L)	0.745	<0.745	<0.745	<0.745	
SILVEX	(UG/L)	0.197	<0.197	<0.197	<0.197	

REPORT OF ANALYSIS

CLIENT: Mr. Dave Purington
Dames & Moore

REPORT DATE: DATE RECEIVED: May 10, 1990 April 18, 1990

PROJ. #: 3500-00385

P.O. #:

·	DETECTION		
	LINIT	BLANK	MW109
COLATILE COMPOUNDS	(UG/L)	(UG/L)	(UG/L)
CROLEIN	100	ND	HD
CRYLONITRILE	100	ND	ND
NZENB	5	ND	ND
OHODICHLOROHETHANE	5	ND	ND
оногоги	5	ND	ND
Omohethane	10	ND	ЯD
RBON TETRACHLORIDE	S	ND	ND
Lorobenzene	5	MD	ND
LOROETHANE	10	ND	ND
CHLOROETHYL VINYL ETHER	5	ND	ND
LOROFORM	5	ND	· MD
LOROHETHANE	10	ND	ND
Bronochloromethane	· 5	ND	. ND
-DICHLORETHANE	5	ND	6
-DICHLOROETHANE	5	ND	MD
-DICHLOROETHENE	5	ND	· ND
AL 1,2-DICHLOROETHENE	5	ND	ND
-DICHLOROPROPANE	Ş	ND	MD
-1,3-dichloropropene	5	ND	ND
IYL BENZENE	5	ND	ND
HYLENE CHLORIDE	5	, ND	ND
,2,2-TETRACHLOROETHANE	5	ND	· ND
TRACHLOROETHYLENE	5	מא	MD
LUENE	5	עא י	ND
1,1-Trichloroethane	5	ND	. ND
, 2-TRICHLOROBTHANE	5	DM	ND
ichloroethene	5	ND	- MD
YYL CHLORIDE	10	ND	. ND
		•	•
RROGATE COMPOUNDS		RCVRY	RCVRY
2-DICHLOROETHANE-D4		94	88
OLUENE-D8		101	99
BPB		98	98

Benzo (a) Pyrene

BIS(2-CHLOROETHOXY) METHANE

BIS(2~CHLOROISOPROPYL)ETHER

BIS(2-RTHYLHEXYL)PHTHALATE

BIS(2-CHLOROETHYL)ETHER

REPORT OF ANALYSIS

CLIENT: Mr. Dave Purington
Dames & Hoore

REPORT DATE: DATE RECEIVED: May 10, 1990 April 18, 1990

Dames a MOIG			DALE REC	PYAPAI
PROJ. #: 3500-00385			P.O. #:	
ACID COMPOUNDS	DETECTION LIMIT (UG/L)	n Blank (UG/L)	MW109 (UG/L)	MW109 DUP (UG/L)
				. ——
2-CHLOROPHENOL	10	ND	ND	ND
2,4-DICHLOROPHENOL	10	ND	MD	· ND
2,4-DIMETHYLPHENOL	10	ND	ND.	ND
2,4-DINITROPHENOL	50	ND	ND	MD
2-NITROPHENOL	10	ND	ND	ND
4-NITROPHENOL	50	ND	ND	ND
PENTACHLOROPHENOL	50	ND	ND	MD
PHENOL	10	ND	ND.	ND
2,4,6-TRICHLOROPHENOL	10	ND	ND	ND
2-METHYL-4,6-DINITROPHENOL	50	ND	MD	ND
4-CHLORO-3-METHYLPHENOL	10	ND .	ND .	ND
		4 .	•	•
SURROGATE COMPOUNDS		RCVRY	RCVRY	RCVRY
2-PLUOROPHENOL		48	4.	2*
PHENOL-16		34	2*	1•
2,4,6-TRIBROMOPHENOL		68	7*	2•
*Below QC limits				
	DETECTION	N	•	HW109
BASE NEUTRAL	LIHIT	BLANK	. MW109	DUP
COMPOUNDS	(UG/L)	(UG/L)	(UG/L)	(DG/L)
· · ·				-
ACENAPHTHENE	10	ND	ND	ND
ACENAPHTHYLENE	10	ND	ND	ND
ANTHRACENE	10	ND	ND	ND
BEHZIDINE	50	ND	ND	ND
Bebz (A) anthracene	10	ND	ND	, AID
BENZO(B, K) PLUORANTHENE	10	ND	ND	HD
BENZO (GHI) PERYLENB	10	ND	ND	סוצ
			•••	

10

10

10

10

ĦD

ND

ND

ND

< DL

ND

ND

ND

ND

ND

ND

ND

ND

ND

14

REPORT OF ANALYSIS

CLIENT: Mr. Dave Purington
Dames & Hoore

REPORT DATE: DATE RECEIVED:

May 10, 1990 April 18, 1990

PROJ. #: 3500-00385

P.O. #:

	DETECTION	H		MW109
BASE NEUTRAL COMPOUNDS	LIHIT	BLANK	HW109	DUP
CONTD.	(UG/L)	(UG/L)	(UG/L)	(UG/L)
4-BROHOPHENYL PHENYL ETHER	10	מא	ND	ND
BUTYL BENZYL PHTHALATE	10	ND	מא	ND
2-CHLORONAPHTHALENE	10	ND	MD	ND
4-CHLOROPHENYL PHENYL ETHER	10	ND	ND .	ND
CHRYSENE	10	ND	ND	MD
DIBENZO(A, H) ANTHRACENE	10	ND	MD	ND
DI-N-BUTYL PHTHALATE	10	ND	ND .	ND
1,2-dichlorobenzene	10	ND	ND	ND
1,3-dichlorobenzene	10	ND	ND	MD
1,4-dichlorobenzene	10	ир	ИД	MD
3,3'-DICHLOROBENZIDINE	20	ND	. ND	ND
DIZTHYL PHTHALATE	10	ND .	ND:	ND
DIMETHYL PHTHALATE	10	ND	ND	ND
2,4-dinitrotoluene	10	ND	ND	ND
2,6-dinitrotoluene	10	ND	ND	ND
DI-N-OCTYL PHTHALATE	10	ND	MD	- ND
1,2-DIPHENYLHYDRAZINE	10	ND	ND	ND
DI-H-PROPYLNITROSAMINE	10	ND	ND	ND
Y LUORANTHENE	10	ND	ND	ND
Pluorene	10	ND	ND	MD
BEXACHLOROBENZENE	10	MD	ND	ND
HE XACHLOROBUTADIENE	10	ND	ND	ND
HE XACELOROCYCLOPENTAD I ENE	10	ND	ND.	ND
HEXACHLOROETHANE	10	ND	ND	ND
INDENO(1,2,3-CD)PYRENE	10	ND	ND	ND
ISOPHORONE	10	ND	ND	ND
RAPHTHALPNE	10	ND	ND .	. ND
NITROBENZENE	10	ND	ND	. MD
B-HITROSODIMETHYLAMINE	10	ND	ND	MD
N-HITROSODIPHENYLAMINE	10	MD	ND	ND
PHENASTHRENE	10	ND	ND	MD
PYRENE	10	ND	ND	HD
1,2,4-Trichlorobenzene	10	ND	ND	ND
			•	
SURROGATE COMPOUNDS		RCVRY	RCVRY	RCVRY
Hitrobenzene-d5		79	57	81
2-PLUOROBIPHENYL		62	48	71
TERPHENYL-d14		79	63	84

P.O. BOX 5351 • Santa Fo, New Mexico 875.03

OUT OF BTATE BOO/545-2166 • FAX - 000-002-044

04/16/90

05/16/90

90-04-263

Date Received:

Date Reported:

Hork Order:

Category:

Dames & Moore

11701 Borman Drive, Suite 340

Saint Louis, MO 63146

Attn: Dave Purington

Nork ID: Environmental

P D # : 19943-002

Certified By:

DAMES & MOORE

MAY 22 1990

ST. LOUIS, MISSOURI

CEP, Inc. Work Order # REPORT 90-04-253 Page 04/16/90 Results by Sample Received: SAMPLE ID BIA NAME Gross Alpha/Beta FRACTION 01A TEST CODE AB S Date & Time Collected 04/12/90 Category SOIL Type of Analysis Detection RESULT Limit pCi/g Gross Alpha 0.3 44.5+/-1.B Gross Beta 0.1 21. 2+/-0.6 All results reported in: UNITS pCi/gram SAMPLE ID BIA FRACTION 01A TEST CODE CS1375 NAME Cesium-137 Date & Time Collected 04/12/90 Category SOIL Type of Analysis Detection Limit RESULT pCi/gram Cesium-137 O. 1 0.14+/-0.06

All results reported in:

UNITS <u>pCi/qram</u>

REPORT Work Order # 90-04-263 CEP, Inc. Page 04/16/90 Results by Sample Received: SAMPLE ID BIA FRACTION 01A TEST CODE ISOU S NAME Isotopic Uranium Date & Time Collected 04/12/90 Category SOIL Type of Analysis RESULT Detection Limit pCi/g Uranium-234 0.05 4.2+/-().50.6+/-0.2 Uranium-235 0.05 Uranium-238 0.05 1. 6+/-0.3All results report in: UNITS pCi/qram TEST CODE K 40 5 NAME Potassium-40 SAMPLE ID BIA FRACTION 01A Date & Time Collected 04/12/90 Category SDIL Type of Analysis RESULT 11.1+/-1.4Potassium-40 All results reported in: pCi/gram UNITS

to recreatered owns the condition that they are not to be reproduced wholly or in part for advertising and/or other purposes over our signature or in connection with our name without special periods and in 20 to

Page Received:	4 04	/16/90	CEP	, Inc. Results by	REPOR Sample	RT	Worl	Order #	90-04-263
SAMPLE ID	<u>B1A</u>			FRACTION <u>O1A</u> Date & Time Col		DDE <u>R26288</u> 04/12/90	NAME Rad	lium-226/22 Category	
		Type of Analysis		Detection Limit pCi/g		RESULT			•
		Radium-226		O. &	-	41.4+/-0.	4		•
	, .	Radium-228		0.1		<:0.	1		
		All res		sults report in:				• .	
	٠.	•	UNITS	pCi/qram				,	•
SAMPLE ID	<u>B1A</u>			FRACTION <u>O1A</u> Date & Time Col		DE <u>TH2305</u> 04/12/90	NAME <u>Tho</u>	rium-230 Category	SOIL
		Type of Analysis		Detection Limit pCi/gram		RESULT			
		Thorium-230		0.05	~	<.0.	2	,	
					es .				ı
	•		All res	ults reported in	:		•		
			UNITS .	pCi/qram					

Page

Received:

04/16/90

CEP, Inc.

REPORT

Work Order #

90-04-263

Results by Sample

SAMPLE ID BIA

Date & Time Collected 04/12/90

FRACTION 01A TEST CODE TH2325 NAME Thorium-232

Category SOIL

Type of Analysis

Detection Limit pCi/gram

RESULT

Thorium-232

0.05

0. 96+/-0. 18

All results reported in:

UNITS

pCi/qram

SAMPLE ID B2A

FRACTION 02A

TEST CODE AB S

NAME Gross Alpha/Beta

Date & Time Collected 04/12/90

Category SOIL

Type of Analysis

Detection Limit pCi/g RESULT

Gross Alpha

0.3

199.1+/-2.4

Gross Beta

Ò. 1

34. 5+/-0. 5

All results reported in:

UNITS pci/qram

REPORT Work Order # Päge CEP, Inc. 90-04-263 Results by Sample Received: 04/16/90 TEST CODE CS1375 NAME Cesium-137 SAMPLE ID B2A FRACTION 02A Category SOIL Date & Time Collected 04/12/90 Type of Analysis Detection Limit RESULT pCi/gram <0.1 Cesium-137 0.1 All results reported in: UNITS <u>ρCi/qram</u> TEST CODE ISOUS NAME Isotopic Uranium SAMPLE ID B2A FRACTION 02A Date & Time Collected 04/12/90 Category SOIL Type of Analysis Detection RESULT Limit pCi/g Uranium-234 0.05 14.4+/-0.B 0.2 + / - 0.1Uranium-235 0.05 Uranium-238 0.05 2.4+/-0.3 All results report in:

____pCi/qram

UNITS

Pag Received	•	7 04,	/16/90	CEP	, Inc. Res	ults by		ORT	Wi	ork	Order #	90-04	-263
SAMPLE I	D	<u>B2A</u>	<u>-</u>		FRACTIO Date &			CODE <u>K 40 5</u> 04/12/90	NAME (<u>ota</u>	ussium-40 Category	SOIL	
			Type of Analys	is		RESULT					·		•
	•		Potassium-40			9	. 2+/-3.	<u>3</u> .					
				All res	ults rep	orted i	n:			• .			. •
SAMPLE I	D	B2A		· · · · · · · · · · · · · · · · · · ·	FRACTIO			CODE <u>R2628S</u> 04/12/90	NAME (ladi	um-226/22 Category		
	_		Type of Analys	is		Detecti: Limit p		RESULT				·	

O. 1 -

150+/-38

All results report in:

Radium-228

UNITS <u>pCi/gram</u>

Page Received:	8 04/16/90	CEP, Inc. Results	REPORT by Sample		Work Order #	90-04-263
SAMPLE ID	B2A	FRACTION <u>02</u> Date & Time	A TEST CODE Collected <u>04/</u>		<u>Thorium-230</u> Category	SOIL
·	Type of Analysis		on Limit RES /gram	BULT		,
	Thorium-230	0	. 05	<0. 2		
	A11	results reporte	d in:			,
•	UNI	TS <u>pCi/qra</u>	<u>n</u>			
SAMPLE ID	<u>B2A</u>	FRACTION <u>02</u> Date & Time	A TEST CODE Collected <u>04/</u>		<u>Thorium-232</u> Category	SOIL
	Type of Analysis		on Limit RES /gram	SULT		
	Thorium-232	0.	05	1. 3+/-0. 5		
	A11	results reported	in:			

pCi/gram

UNITS

ITRSL Oak Ridge REPU 05/15/90 15: 53: 05 REPORT Page 1 Work Order # 50-04-048 Received: 04/13/90 REPORT DAMES & MODRE PREPARED IT/RADIOLOGICAL SCIENCES LAB. TO 11701 BORMAN DRIVE BY 1550 BEAR CREEK ROAD SUITE 340 DAK RIDGE, TN 37831 ST. LOUIS, MO 63146 ATTEN DAVID PURINGTON ATTEN ERS PHONE 615-482-9707 CONTACT JIM DILLARD CLIENT DAMES ST SAPLES 19 COMPANY DAMES & MOORE FACILITY ST. LDUIS, MD WORK ID SOIL SAMPLES TAKEN TRANS TYPE P. O. # INVOICE under segarate cover SAMPLE IDENTIFICATION TEST CODES and NAMES used on this report GALPHA GROSS ALPHA 01 S1 02 S2 03 S3 04 S4 05 C1 05 C2 07 VB-1 09 VB-2 09 VB-3 GBETA GROSS BETA CANMA SPEC RA226 RA-226 RA-228 RA229 THEE8 TH-SEE TH230 TH-230 TH-232 TH232 U-234 U234 10 UB-4 V-225/226 <u>U235</u> 11 UB-5 U-238 12 UB-6 13 81-4 14 81-8 15 81-5 16 B2-A 17 B2-3 18 B2-C

19 BKG

Page 1 Received: 04/13/90

ITASL Cak Ridge REFOR Results by Sample

REFERT Work Order # 60-04-048

SAMPLE ID SI

PRACTION 01A TEST CODE 9S NAME SAMMA SPEC Date & Time Collected 04/12/70 Catagory

UNITS <u>aCi/a</u> SRTN 05/15/90

. VERIFIED 3Y ERS

GAMMA SPEC	REBULT	2-Sigha	OTAER	RESULT	E-SIGMA
X -1 0	1. 77E+1	0: 3CE+1	GRCSS ALPHA	3. 21E+1	1. 12E+1
CS-137	CZ_ CE-1		GROSS BETA	2. 67E+1	1. 1GE+1
RA-225	1.18E+0	0.14E+0	IJ-224	1. 01E+0	0. 255-0
RA-228	1. 245-0	0. 26 2 +0	U-235/234	(A. CE-1	
			U-238	3. 84E-!	2.30E-1
			TH-200	1. 28E+0	0. 32E+0
			TH-202	1. 02E+0	0. 27E+0

34943 ID <u>92</u>

FRACTION COA TEST CODE CO NAME CAMMA SPEC Date & Time Cullacted (04/12/9) Jacq

UNITE <u>001/6</u> WATN 05/15/90

VERIFIED 3Y ERS

GAMMA SPEC	RESULT	2 -3 igma	011 -2 2	RESULT	2-51GMA
<i>X</i> −40	5. 12E+0	0. 75E+0	GROSS ALPHA	1. 74E+1	0. 77E+1
RA- 2 26	1. 1EE+0	0. 12E+0	GROSS BETA	2. 57E+1	0. 91E+1
RA-228	1. 29E+)	0.16E+0	U-224	9. 51E-1	2. 69E-1
CS-137	6. 95E-2	3. 245-2	V-235/236	Ká. 0E-1	-
			V-228	1.07E+0	0. 29E÷0
		•	TH-220	2. 255+0	0. +CE+0
			TH-232	1. 17E-0	0. 25E+0

Page 2 Received: 04/13/90

ITRSL Oak Ridge REPORT
Results by Sample

Work Order # S0-04-048

SAMPLE ID S3

FRACTION OGA TEST CODE GS NAME CAMMA SPEC
Date & Time Collected 04/12/90 Catego

Category

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

CANTA SPEC	RESULT	2-Signa	OTHER	RESULT	2-SIGMA
K-40	1. 02E+1	0. 14E+1	CROSS ALPHA	2. 32E+i	0. 91E+1
CS-137	C2. 0E-1		CROSS BETA	1.79E+1	0.76E+1
RA-226	7.83E-1	0. 84E-1	U-234	7. 4EE-1	1. 91E-1
RA-228	5.86E-1	1.02E-1	U-235/236	C6. 0E-1	
			U-238	7.82E-1	1. 96E-1
			TH-230	2. 55E+0	0.44E+0
			TH-232	7.05E-1	1.81E-1

SAMPLE ID S4

FRACTION 04A TEST CODE 98
Date & Time Collected 04/12/90

UNITS pci/q WRTN 05/15/90 VERIFIED BY ERS

CAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGNA
K-40 C9-137 RA-226 RA-228	1. 09E+1 <0. 2 1. 18E+0 1. 26E+0	0. 15E+1 0. 11E+0 0. 16E+0	CROSS ALPHA CROSS BETA U-234 U-235/236 U-238 TH-230 TH-232	2. 19E+2 2. 73E+1 1. 06E+0 C6. 0E-1 6. 38E-1 2. 38E+0 1. 08E+0	0. 50E+2 0. 94E+1 0. 28E+0 2. 10E-1 0. 49E+0 0. 29E+0

Page 3 Received: 04/13/90

ITRSL Cai Ridge REPORT Work Order # SO-04-048
Results by Sample

SAMPLE ID C1

FRACTION 05A TEST CODE 6S NAME CAMMA SPEC
Date & Time Collected 04/12/70 Catego

Category

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

GAYMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40	1. 01E+1	0. 14E+1	CROSS ALPHA	1. 50E+1	0. 71E+1
CS-137	C2 0E-1		CROSS BETA	2. 55E+1	1. 01E+1
RA-226	1.06E+0	0.11E+0	U-234	9. 51E-1	2.80E-1
RA-228	1. 22E+0	0.16E+0	U-235/236	(6. 0E-1	-
			U-238	9. 51E-1	2. 80E-1
			TH-230	2 22E+0	0. 45E+0
			TH-232	1. 32E+0	0. 32E+0

EAMPLE ID CE

FRACTION <u>OLA</u> TEST CODE <u>GS</u> NAME <u>GAMMA SPEC</u>
Date & Time Collected <u>94/12/90</u> Category

UNITS pCi/q WRTN 05/15/90

GAMMA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-SIGMA
K-40 CS-137	1. 82E+1 C2. 0E-1	0. 29E+1	CROSS ALPHA CROSS BETA	1. 84E+1 2. 16E+1	0. 82E+1 0. 98E+1
RA-226 RA-228	1. 15E+0 1. 29E+0	0. 12E+0 0. 18E+0	U-234 U-235/236 U-228	1. 02E+0 C6. 0E-1 7. 65E-1	0. 24E+0 2. 01E-1
			TH-230 TH-222	2. 37E+0 1. 22E+0	0. 43E+0 0. 27E+0

Page 4 Received: 04/13/90 ITRSL Oat Ridge REPORT
Results by Sample

Work Order # 50-04-048

SAMPLE ID UB-1

FRACTION 07A TEST CODE GS Date & Time Collected 04/12/90

NAME CAMMA SPEC Category

UNITS pCi/q WRTN 05/15/90

VERIFIED BY RDJ

GAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40	9. 91E+0	1. 36E+0	CROSS ALPHA	2. 36E+1	0. 99E+1
CS-137	2. 97E-1	0. 55E-1	CROSS BETA	2. 35E+1	0. 85E+1
RA-226	1. 02E+0	0.10E+0	U-234	1. 27E+0	0. 25E+0
RA-228	1: 11E+0	0. 14E+0	U-235/236	<6.0E−i	
.,			U-238	1. 04E+0	0. 22E+0
			TH-220	2. 53E+0	0. 50E+0
			TH-232	9. 85E-1	2. 68E-1

SAMPLE ID UB-2

FRACTION <u>CEA</u> TEST CODE <u>GS</u>
Date & Time Collected <u>04/12/90</u>

NAME GAMMA SPEC

Latenoru

UNITS <u>pCi/q</u> WRTN 05/15/90

GAMMA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-51GMA
K-40	1. 17E+1	0. 16E+1	CROSS ALPHA	2_60E+1	1. 01E+1
CS-137	3. 05E-1	0. 59E-1	GROSS BETA	3. 00E+1	1.11E+1
RA-226	1.15E+0	0.11E+0	U-234	1. 22E+0	0. 25E+0
RA-228	1. 22E+0	0. 15E+0	U-235/236	<6. 0E-1	
			U-238	-1. 22E+0	0. 25E+0
	•		TH-230	1.8CE+0	0. 43E+0
			TH-232	1. 16E+0	0. 33E+0

Page 5 Received: 04/13/90

ITRSL Dak Ridge REPOR Results by Sample REPORT

Work Order # S0-04-048

SAMPLE ID UB-3

FRACTION 09A TEST CODE GS Date & Time Collected 04/12/90

NAME CAMMA SPEC

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

GAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40	1. 46E+1	0. 19E÷1	CROSS ALPHA	2. 58E+1	1. 01E+1
CS-137	2.43E-1	0.5EE-1	CROSS BETA	3. 11E+1	1. 09E+1
RA-226	1.16E+0	0. 11E+0	U-234	9. 10E-1	1. 98E-1
RA-228	1.22E+0	0.1EE+0	U-235/226	<6. CE-1	•
			V-238	9. 24E-1	2.00E-1
		. •	TH-230	2. 23E+0	0.46E+0
			TH-232	1. 18E+0	0.30E+0

SAMPLE ID UB-4

FRACTION 10A TEST CODE GS NAME GAMMA SPEC Data & Time Collected 04/12/70 Category

Category

UNITS <u>pCi/q</u> WRTN 05/15/90

CANNA SPEC	RESULT	2-Signa	OTHER	RESULT	2-SIGNA
K-40	1.77E+1	0. 29E+1	CROSS ALPHA	2. 00E+1	0. 85E+1
CS-137	C2_0E-1		CROSS BETA	2. 90E+1	0. 99E+1
RA-226	1.07E+0	0.12E+0	U-234	9.52E-1	2.11E-1
RA-228	1.35E+0	0.20E+0	U-235/236	Cb. 0E-1	
		.•	U-238	7.38E-1	1.82E-1
	-		TH-230	2 11E+0	0.42E+0
			TH-232	1.07E+0	0. 27E+0

Page 6 Received: 04/13/90

ITRSL Cak Ridge REPORT
Results by Sample

Hork Order # 50-04-048

SAMPLE ID UB-5

FRACTION 11A TEST CODE GS
Date & Time Collected 04/12/90

NAME GAMMA SPEC Category

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

CAITIA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40	1.86E+1	0. 30E+1	CROSS ALPHA	1. 83E+1	0. 83E+1
CS-137	C2_0E-1		CROSS BETA	2 56E+1	0. 97E+1
RA-226	1.14E+0	0.1年+0	U-234	1. 27E+0	0. 26E+0
RA-228	1.55E+0	0.22E+0	U-235/236	Cb. 0E-1	
•			V-238	9.71E-1	2.17E-1
		-	TH-230	3.06E+0	0. 55E+0
			TH-232	1. 64E+0	0.42E+0

SAMPLE ID UB-6

FRACTION 12A TEST CODE GS NAME GAMMA SPEC Data & Time Collected 04/12/90 Catag

Catagory

UNITS pCi/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-SIGYA	OTHER	RESULT	2-SIGNA
K-40	1. 97E+1	0. 32E+1	CROSS ALPHA	2. 75E+1	0. 99E+1
CS-137	2 1Œ-1	0. 54E-1	CROSS BETA	2.51E+1	0. 80E+1
RA-266	1. 23E+0	0.14E+0	U-234	1. 19E+0	0. 27E+0
RA-228	1. 52E+0	0. 21E+0	U-235/236	C6. 0E-1	
			U-238	1. 16E+0	0. 26E+0
			TH-230	2. 52E+0	0. 52E+0
			TH-232	1. 23E+0	0. 32E+0

Page 7 Received: 04/13/90 ITRSL Dat Ridge REPORT Results by Sample Work Order # 50-04-048

SAMPLE ID BI-A

FRACTION 13A TEST CODE GS NAME
Date & Time Collected 04/12/70

Category

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

CAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40	1. 24E+1	0. 22E+1	GROSS ALPHA	1. 65E+3	0. 34E+3
CS-137	C2_0E-1		GROSS BETA	3.13E+2	0. 66E+2
RA-226	3. 95E+1	0. 33E+1	U-234	7. 91E+0	.1.03E+0
RA-228	9. 59E-1	3. 40E-1	U-235/236	C6. 0E-1	
			V-238	6. 90E+0	0. 92E+0
		•	TH-230	1. 5EE+3	0. 37E+3
			TH-232	5. 09E+0	1. 59E+0

SAMPLE ID B1-8

FRACTION 14A TEST CODE GS NAME GAMMA SPEC Catego

UNITS <u>pCi/q</u> WRTN 05/15/90

CAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-SIGMA
K-40 CS-137 RA-226	6. 78E+0 C2. 0E-1 2. 96E+1	1. 45E+0 0. 45E+1	GROSS ALPHA GROSS BETA U-224	6. 33E+0	0. 40E+3 0. 64E+2 1. 06E+0
RA-228	9. 55E-1	2. 97E-1	U-235/236 U-238 TH-230 TH-232	6. 33E+0 1. 39E+3 4. 11E+0	1. 06E+0 0. 27E+3 1. 12E+0

Fage 8 Received: 04/13/90

ITRSL Cak Ridge REPORT
Results by Sample

Work Order # 50-04-048

SAMPLE ID BI-C

FRACTION 15A TEST CODE GS. Date & Time Collected 04/12/90

NAME GAMMA SPEC Category

UNITS pCi/q WRTN 05/15/90

VERIFIED BY RDJ

GAMMA SPEC	RESULT	2-SIGNA	OTHER	RESULT	2-SIGMA
K-40	1. 16E+1	0. 20E+1	CROSS ALPHA	1. 81E+3	0. 37E+3
CS-137	3. 21E-1	0. 90E-1	CROSS BETA	2.74E+2	0. 58E+2
RA-226	2. 40E+1	0. 37E+1	U-234	7. 44E÷0	1. 04E+0
RA-228	1. 29E+0	0. 2AE+0	U-235/236	CA. 0E-1	
		• • • • •	U-228	7. CCE+0	0. 99E+0
			TH-230	1. 43E+3	0. 3&E+3
			TH-232	A AGEAN	2 15540

SAMPLE ID BE-A

FRACTION 16A TEST CODE GS NAME GAMMA SPEC Date & Time Collected G4/12/-0 Categ

UNITS pCi/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-SIGMA	OTHER	RESULT	2-51GMA
K-40	9. 40E+0	1.83E+0	CROSS ALPHA	7. 81E+3	1. 57E+3
CS-137	C2_0E+1		GROSS BETA	9. 69E+2	1. 97E+2
RA-226	1. 51E+1	0.19E+1	U-234	1.80E+1	0. 24E+1
RA-228	1: 25E+0	0.36E+0	U-235/236	2. 13E+0	0. 44E+0
			V-228	1.14E+1	Q. 16E+1
		7	TH-230	3.72E+3	0. 7EE+3
			TH-232	4. 53E+0	1. 31E+0

Page 9 Received: 04/13/90

ITRSL Oak Ridge REPORT
Results by Sample

Work Order # 50-04-048

SAMPLE ID B2-B

FRACTION 17A TEST CODE GS
Date & Time Collected 04/12/90

NAME GAMMA SPEC Category

UNITS pCi/q WRTN 05/15/90 VERIFIED BY RDJ

GAMMA SPEC	RESULT	2-Sigha	OTHER	RESULT	2-SIGMA
K-40	9. 18E+0	1. 72E+0	GROSS ALPHA	5. 56E+3	1. 12E+3
CS-137	C2. 0E-1		GROSS BETA	7.76E+2	1.59E+2
RA-226	5. 93E+1	0. 47E+1	U-234	1. 13E+1	0. 15E+1
RA-228	1. 16E+0	0. 31E+0	U-235/236	C6. 0E-1	
			V-238	6. 53E+0	0. 92E÷0
			TH-230	2. 82E+3	0. 58E+3
			TH-232	1. 31E+1	0. 30E+1

SAMPLE ID BE-C

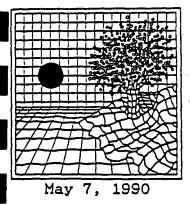
FRACTION 18A TEST CODE 63 NAME GAMMA SPEC
Date & Time Collected 04/12/90 Category

UNITS pCi/q WRTN 05/15/90

CAMMA SPEC	RESULT	2-Sigma	OTHER	RESULT	2-SIGMA
K- 1 0	9. 53E+0	1. 61E+0	CROSS ALPHA	1. 08E+3	0. 22E+3
CS-137	C2_0E-1		CROSS BETA	1. 49E+2	0. 35E+2
RA-226	9.88E+0	1. 59E+0	U-234	1. 98E+0	0. 33E+0
RA-228	9. 90E-1	1. 73E-1	U-235/226	6. 61E-1	1.62E-1
			U-238	2 14E+0	0. 35E+0
			TH-230	5. 74E+2	1. 13E+2
	·		TH-232	1. 16E+0	0. 49E+0

Page 10 Received: 04/13/90

ITRSL Clak Ridge REPORT Results by Sample


Work Order # 50-04-048

SAMPLE ID BKG

FRACTION 19A TEST CODE 95 NAME GAMMA SPEC
Date & Time Collected 04/12/90 Category

UNITS pCi/q WRTN 05/15/90

GAMMA SPEC	RESULT	2-Signa	on ie r	RESULT	2-SIGNA
K-40	1. 81E+1	0. 29E+1	CRUSS ALPHA	3. 30E+1	1. 14E+1
CS-137	C2_0E-1		CROSS BETA	2.795+1	0.96E+1
RA-225	1.09E+0	0.12E+0	U-234	1.13E+0	0. 31E+0
RA-228	1.32E+0	0. 1EE+0	U-235/236	Cá. CE-1	
•		•	U-23B	1.11E+0	0.31E+0
		•	TH-230	3. 55E÷0	0. 61E+0
			TH-232	1 54F+0	0.33E±0

David Purington
DAMES & MOORE
11701 Borman Drive, Suite 340
St. Louis, Missouri 63146

Project: 19943 - 002; Ford Earth City

Dear Mr. Purington:

Enclosed are the analytical results for your samples received in our laboratory on April 17, 1990, for the above captioned project.

All the samples were originally extracted on April 17, 1990. The acid surrogates were outside QC limits for sample MW105, MW106 and MW107. These samples were re-extracted on April 26, 1990 and re-analyzed on May 1, 1990. The acid surrogates also did not meet the recovery criteria for sample MW105 and MW106. This indicated a matrix effect. We have reported the data from the reanalyses for these three sampls.

Per your request we have preformed a matrix spike and duplicate for the following samples;

MW101 (cyanide), MW105 (metals)

Additional Matrix Spike/Matrix Spike Duplicates will follow with the completion of the remaining portion of this project.

If, in your review, you should have any questions or require additional information, please call.

Sincerely,

Randy Staggs Project Manager

DAMES & MOORE

MAY 08 1990

ST. LOUIS, MISSOUR

RS/jl

Enclosures

1700 WEST ALBANY. SUITE C • BROKEN ARROW. OK 74012 (918) 251-2858 • FAX (918) 251-2599 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON DATE: 05-07-90

2388.01M

REPORT:

SAMPLE MATRIX: WATER

SWLO # 2388.01

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW101

RAMETER		DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
THATAL CYANIDE		0.02	mg/L	ND	04-27-90	SM 412D
THE STANTE	•	0.02	mg/L	140	04-27-70	30 4120
OTAL METALS						
SENIC		10.0	ug/L	ND	05-02-90	EPA 206.2
-EAD		3.0	ug/L	ND	05-01-90	EFA 239.2
<u>:E</u> RCURY		0.2	ug/Ŀ	ND .	04-25-90	EPA 245.1
ELENIUM	•	5.0	ug/L	ND	05-02-90	EFA 270.2
ALLIUM	•	10.0	ug/L	ND	05-01-90	EPA 279.2
INTIMONY		30.0	ug/L	ND	04-25-90	EPA 200.7
RYLLIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
COMIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
HROMIUM	•	5.0	ug/L	ND	04-25-90	EPA 200.7
PFER	•	10.0	ug/L	152	04-25-90	EPA 200.7
r CKEL	•	10.0	ug/L	ND	.04~25~90	EPA 200.7
\$₹LVER		. 10.0	ug/L	ND	04-25-90	EPA 200.7
LINC		10.0	ug/L	102	04-25-90	EPA 200:7

PA = #EPA600/4-79-020, MARCH 1985

D = NOT DETECTED ABOVE QUANTITATION LIMIT

M = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE

REPORT: 2388.01H

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWL0 # 2388.01

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW101

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D 2,4,5-TP (SILVEX)	1.0	ND ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

85%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

UTHWEST LABORATORI OF ORLANDING 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

2388.01P

REPORT:

ATTN: DAVID PURINGTON

SAMPLE MATRIX:

SWLD # 2388.01

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED : 05-01-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW101

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
		1.15
ALPHA-BHC BETA-BHC DELTA-BHC GAMMA-BHC(LINDANE) HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE	0.05	ND
BELA-BHU	0.05	ND
DELIA-MIL	0.05	ND
GAMMA-EHC(LINDANE)	0.05	ND
HEPTACHLUR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ИD
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154)

ND = NOT DETECTED ABOVE QUANTITATION LIMIT .

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MODRE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.01V

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388.01

DATE SUBMITTED: 04-17-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW101

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

.VOLATILES	DET. LIMIT	RI	ESUL	.TS	<u>VOLATILES</u>	DET. LIMIT	RESULTS
ORDMETHANE	10		ND		1,1,2,2-TETRACHLOROETHANE	5	ND
SHOMOMETHANE	10		ND		1,2-DICHLOROPROPANE	5	ND
- NYL CHLORIDE .	10		ND		TRANS-1,3-DICHLOROPROPENE	5	ND
ORDETHANE	10		ND		TRICHLORGETHENE	5	ND
HYLENE CHLORIDE	5	18		В	DIBROMOCHLOROMETHANE	5	ND
LACETONE	10	5		J	1,1,2-TRICHLOROETHANE	5	ND
■BON DISULFIDE	5		ND		BÉNZENE	5	ND
'TE-DICHLOROETHENE	5		ND		CIS-1,3-DICHLOROPROPENE	5	ND
1,1-DICHLOROETHANE	5		ND		2-CHLOROETHYLVINYLETHER	10	ND
_ANS-1,2-DICHLOROETHENE	5		ND		BROMOFORM	5	ND
OROFORM	5		ND		2-HEXANDNE	10	ND
172-DICHLOROETHANE	5		ND		4-METHYL-2-PENTANONE	10	ND
BUTANONE	10		ND		TETRACHLOROETHENE	5	ND
1-TRICHLOROETHANE	5		ND		TOLUENE	5	ND
C RON TETRACHLORIDE	5		ND		CHLOROBENZENE	5	ND
VINYL ACETATE	10		ND		ETHYLBENZENE	5	ND
#OMODICHLOROMETHANE	5		ND		STYRENE	5	ND
: •					TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

IDLUENE-d8(88-110) 97% BROMOFLUOROBENZENE(86-115) 93% 1,2-DICHLOROETHANE-d4(76-114) 97%

HD = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IS & MOORE 70 BORMAN DRIVE, SUITE 340 DUIS, MO 63146 #: DAVID PURINGTON

REPORT: 2388.01B

DATE: 05-07-90

MATRIX: WATER DATE SUBMITTED: 04-17-90

7 2388.01

DATE EXTRACTED: 04-17-90

IDD REF.: SW846-8270, EPA METHODOLOGY OJET: 19943 - 002; FORD EARTH CITY

DATE ANALYZED : 04-26-90

de€ ID: MW101

MI DLATILES	DET. LIMIT	RESULTS	SEMIVOLATILES	DET. LIMIT	RESULTS
- <u>-</u> -	10	ND	ACENAPHTHENE	10	ND
s(-CHLOROETHYL) ETHER	10	ND	2,4-DINITROPHENOL	50	ND
= ICOROPHENOL	10	ND	4-NITROPHENOL	50	ND
-DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
4- ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
NZTL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
HYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
S(-CHLOROISOPROFYL)ETHER	10	ND	FLUORENE	10	ND
TITHYLPHENOL	10	ND	4-NITROANILINE	50	ND
ROSO-DI-n-PROFYLAMINE	10	ND	4,5-DINITRO 2-METHYLPHENOL	50	ND
KAMLOROETHANE	10	ND	N-NITROSODIFHENYLAMINE(1)	10	ND
<u> </u>	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
<u>PH</u> ORONE	10	ND	HEXACHLOROBENZENE	10	ND
ROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
4- IMETHYLPHENOL .	10	ND	PHENANTHRENE	10	ND
TIDIC ACID	50	ND	ANTHRACENE	10	ND
CHLOROETHOXY)METHANE	10	ИD	DI-N-BUTYLPHTHALATE	10	ND
4- ICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
2.4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
THALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
CROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
XACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
MLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
- HYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
XA HLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
-,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
-TRICHLOROPHENOL	50	ND	BENZD(K)FLUORANTHENE	10	ND
-CI ORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
-NITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
PHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
-NITROANILINE	50	ND	, ,-,		-
1 500		•			

BA/BC SURROGATE RECOVERIES

(33-141) 68% (10-94)68% 2-FLUOROFHENDL (21-100) 48% 2,4,6-TRIBROMOFHENOL(10-123) 60%

NOT DETECTED ABOVE QUANTITATION LIMIT ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION 🕆 ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

TENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON REPORT: 2388.02M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388.02

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW105

ARAMETER		DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TO AL CYANIDE	÷	0.02	mg/L	ND	04~27-90	SM 412D
ATAL METALS						,
ARSENIC		10.0	ug/L	ND	05-02-90	EPA 206.2
EAD		3.0	ug/L	ND	05-01-90	EPA 239.2
₩ RCURY		0.2	ug/L	ND .	04-25-90	EPA 245.1
SELENIUM		5.0	ug/L	NĎ	05-02-90	EFA 270.2
THALLIUM		10.0	ug/L	ND	05-01-90	EPA 279.2
TIMONY		30.0	ug/L	ND	04-25-90	EPA 200.7
THALLIUM TIMONY SRYLLIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
CADMIUM	•	5.0	ug/L	ND	04-25-90	EPA 200.7
HROMIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
PPER		10.0	ug/L	73	04-25-90	EPA 200.7
NTCKEL		10.0	ug/L	ND	04-25-90	EPA 200.7
TILVER		10.0	ug/L	ND	04-25-90	EPA 200.7
NC		10.0	ug/L	489	04-25-90	EPA 200.7

= #EPA600/4-79-020, MARCH 1985

= NOT DETECTED ABOVE QUANTITATION LIMIT

= STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.02H

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLD # 2388.02

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW105

RESULTS REPORTED IN ug/L OR Parts Per Billion

• .	DET.	•
HERBICIDES	LIMIT	RESULTS
		,
2,4-D	1.0	ND ·
2,4,5-TP (SILVEX)	0.2	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98).

91.2%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY DUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

INT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.02P

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388.02

DATE SUBMITTED: 04-17-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-01-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW105

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC (LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEFTACHLOR EFOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	. ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 65%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.02V

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388.02

DATE SUBMITTED: 04-17-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW105

RESULTS REPORTED IN ug/L OR Parts Fer Billion (PFB)

	DET.				DET.	
10LETILES	LIMIT RESULTS			VOLATILES	LIMIT	RESULTS
FOMETHANE	10	ND		1,1,2,2-TETRACHLOROETHANE	5	ND
ROOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND
-NYL CHLORIDE	10	ND		TRANS-1,3-DICHLOROPROPENE	5	ND
I <u>O</u> ROETHANE	10	ND		TRICHLOROETHENE	5	ND
TET YLENE CHLORIDE	5	19	B	DIBROMOCHLOROMETHANE	5	ND
-CTONE	10	ó	J	1,1,2-TRICHLORDETHANE	5	ND
REON DISULFIDE	5	ND		BENZENE	5	ND
DICHLOROETHENE	- 5	ND	•	CIS-1.3-DICHLOROPROPENE	5	ND ·
L, DICHLOROETHANE	5	ND		2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND
ROFORM	5	· ND		2-HEXANONE	10	ND
!, DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND
2=BUTANONE	10	ND		TETRACHLOROETHENE	5	ND
1_1-TRICHLOROETHANE	5	ND		TOLUENE	5	ND
TAIL ON TETRACHLORIDE	5	ND		CHLOROBENZENE	5	ND
/INTL ACETATE	10	ND		ETHYLBENZENE	5	ND
OMODICHLOROMETHANE	5.	ND		STYRENE	5	ND
				TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

IQEUENE-d8(88-110) 103% BROMOFLUOROBENZENE(86-115) 90% 1,2-DICHLOROETHANE-d4(76-114) 103%

NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ES & MOORE

BORMAN DRIVE, SUITE 340

UIS, MO 63146

N: DAVID PURINGTON

E MATRIX: WATER

.OT# 2388.02

THOD REF.: SW845-8270, EPA METHODOLOGY

CT: 19943 - 002; FORD EARTH CITY

REPORT: 2388.028

DATE: 05-07-90

DATE SUBMITTED: 04-17-90

DATE EXTRACTED: 04-26-90

DATE ANALYZED : 05-01-90

E ID: MW105

477150	DET.	RESULTS	COMTUNE ATTLES	DET.	RESULTS	3
MIDLATILES	LIMIT	(ug/L)	SEMIVOLATILES	LIMIT	(ug/L)	
ENOL	10	ND	ACENAPHTHENE	10	ND	
SC -CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND	
CHEOROPHENOL	10	ND	4-NITROPHENOL	50	ND	
3-DICHLOROBENZENE	10	ND	DIBENZOFURAN .	10	ND	
1- ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND	
ENTAL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND	
2-DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND	
1 HYLFHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND	
(SE-CHLOROISOFROFYL) ETHER	10	ИВ	FLUORENE	10	ND	
METHYLPHENOL	10	ND	4-NITROANILINE	50	ND	
NITROSO-DI-n-PROFYLAMINE	10	ND	4,6-DINITRO 2-METHYLFHENOL	50	ND	
EXCHLOROETHANE	10	ND.	N-NITROSODIPHENYLAMINE(1)	10	ND	
ITROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND	
JEHORONE	10	ND	HEXACHLOROBENZENE	10	ND	
TROPHENOL	10	ND	FENTACHLOROFHENOL	10	ND	
. 4 DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND	
NZDIC ACID	50	ND -	ANTHRACENE	10	ND	
2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLFHTHALATE	10	ND	
DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND	
_2.4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND	
PHTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND	
- LOROANILINE	10	ND	3.3-DICHLOROBENZIDINE	20	ND	
EXACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND	
TOHLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	2 3	J
THYLNAPHTHALENE EX CHLOROCYCLOPENTADIENE	10	ND	CHRYSENE	10	ND	
	. 10	ND	DI-N-OCTYL PHTHALATE	10	ND	
_4,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND	
5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND	
= ALORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND	
-NITROANILINE	50	an	INDENO(1,2,3-CD) PYRENE	10	ND	
METHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ПD	
- NAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	- 10	ND	
TROANILINE	50	ND				

QA/QC SURROGATE RECOVERIES

OBENZENE-d5(35-114) 87: 2-FLUOROBIPHENYL(43-116) 74: TERPHENYL-d14 (33-141) 85% L-d5 (10-94)17% 2-FLUDROPHENOL (21-100) 5%% 2.4.6-TRIBROMOPHENOL(10-123) 10%

NOT DETECTED ABOVE QUANTITATION LIMIT

ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.03M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWL0 # 2388.03

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW106

FIRAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
_TOTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
-TUTAL METALS					
-ASENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
MERCURY	3.0 0.2	ug/L ug/L	ND ND	05-01-90 04-25-90	EPA 239.2 EPA 245.1
-3 LENIUM HALLIUM	5.0	ug/L ug/L	ND ND	05-02-90 05-01-90	EPA 270.2 EPA 279.2
TANTIMONY TERYLLIUM	30.0 5.0	ug/L ug/L	44.7 ND	04-25-90 04-25-90	EPA 200.7 EPA 200.7
DMIUM CHROMIUM	5.0 5.0	ug/L ug/L	ND ND	04-25-90 04-25-90	EPA 200.7 EPA 200.7
COPPER - ICKEL	10.0	ug/L ug/L	80 ND	04-25-90 04-25-90	EPA 200.7 EPA 200.7
ZINC	10.0 10.0	ug/L ug/L	ND 56.4	04-25-90 04-25-90	EPA 200.7 EPA 200.7

PA = #EPA600/4-79-020, MARCH 1985

= NOT DETECTED ABOVE QUANTITATION LIMIT

1 = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT:

DATE:

2388.03H

05-07-90

ENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2388.03

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90

DATE ANALYZED: 05-02-90
METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW106

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D	1.0	ND
2,4,5-TP (SILVEX)	0.2	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

91.7%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.03P

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388.03

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED : 05-01-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW106

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND .
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4.4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	NĎ
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

BA/BC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 70%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.03V

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWL0 # 2388.03

DATE SUBMITTED: 04-17-90
DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW106

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET. LIMIT	RESU	LTS	VOLATILES	DET.	RESULTS
CILOROMETHANE	10	ND		1,1,2,2-TETRACHLOROETHANE	5	ND
250MOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND
INYL CHLORIDE	10	ND		TRANS-1,3-DICHLOROPROPENE	5	ND
OROETHANE	10	ND		TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	. 5	19	В	DIBROMOCHLOROMETHANE	5	ND
ETONE	10	4	J	1,1,2-TRICHLOROETHANE	5	ND
RBON DISULFIDE	5	ND		BENZENE	5	ND
1 L-DICHLOROETHENE	5	ND		CIS-1,3-DICHLOROPROFENE	5	ND
1-DICHLOROETHANE	5	ND		2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND
CLOROFORM	5	ND	ı	2-HEXANONE	10	ND
1-2-DICHLOROETHANE	5	ND	ı	4-METHYL-2-PENTANONE	10	ND
FBUTANONE	1.0	ND	ı	TETRACHLOROETHENE	5	ND
-1,1-TRICHLORDETHANE	5 1	ND	1	TOLUENE	5	ND
RBON TETRACHLORIDE	5	ND	1	CHLOROBENZENE	5	ND
	10	ND	•	ETHYLBENZENE	5	ND
-OMODICHLOROMETHANE	5	ND	r	STYRENE	5	ND
				TOTAL XYLENES	5	ND
				•		

QA/QC SURROGATE RECOVERIES

"DLUENE-d8(38-110) 97% BROMOFLUGROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 103%

보D = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

& MOORE BORMAN DRIVE, SUITE 340 buis, MO 63146 DAVID PURINGTON

REPORT: 2388.03B

DATE: 05-07-90

E MATRIX: WATER

DATE SUBMITTED: 04-17-90

2388.03

DATE EXTRACTED: 04-26-90

D REF.: SW846-8270, EPA METHODOLOGY CT: 19943 - 002; FORD EARTH CITY

DATE ANALYZED: 05-01-90

E ID: MW106

*** OLATILES	DET. LIMIT	RESULTS (ug/L)	<u>SEMIVOLATILES</u>	DET. LIMIT	RESULTS (ug/L)
EREL	10	ND	ACENAPHTHENE	10	ND .
g(-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENCL	50	ND
LOROPHENOL	10	ND	4-NITROPHENOL	50	ND
DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
4- ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
TL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND -
HYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
.sCHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
THYLPHENOL	10	ND	4-NITROANILINE	50	ND
ROSO-DI-n-PROFYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
:X/ HLOROETHANE	10	11D	N-NITROSODIFHENYLAMINE(1)	10	ND .
OBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
LUORONE	10	ND	HEXACHLOROBENZENE	10	ND
NOPHENOL	10.	ND	PENTACHLOROPHENOL	10	ND
- IMETHYLPHENOL	10	מא	PHENANTHRENE	10	ND
OIC ACID	50	- ND	ANTHRACENE	10	ND
:5 -CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
.4DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND .	FYRENE	10	ND
THALENE	10	ND	BUTYLBENZYLPHTHALATÉ	10	ND
-C _OROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
CHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
LDRO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	27 .
-iT THYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
EXECHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
	50	ND	BENZO(K)FLUORANTHENE	10	ND
-OLLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
TROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
SAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
- MITROANILINE	50	ND	· :		

QA/QC SURROGATE RECOVERIES

OBENZENE-d5(35-114) 87% 2-FLUOROBIPHENYL(43-116) 73% TERPHENYL-d14 (33-141)25% 2-FLUOROPHENOL (21-100) 8%* 2,4,6-TRIBROMOPHENOL(10-123) (10-94)

NOT DETECTED ABOVE QUANTITATION LIMIT ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE SURROGATE RECOVERY DUTSIDE OF QC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.04M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWL0 # 2388.04

DATE SUBMITTED: 04-17-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW107

	DET.			DATE	METHOD	
ASAMETER	LIMIT	UNIT	RESULTS	ANALYZED	REFERENCE	
TOTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D	
CAL METALS						
ARSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2	
£ D	3.0	ug/L	ND	05-01-90	EFA 239.2	
-EKCURY	0.2	ug/L	ND	04-25-90	EFA 245.1	
SELENIUM	5.0	ug/L	ND	05-02-90	EPA 270.2	
-WALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2	
_ TIMONY	30.0	ug/L	33.1	04-25-90	EPA 200.7	
BERYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7	
<u> La</u> dmium	5.0	ug/L	ND	04-25-90	EPA 200.7	
ROMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7	
-CE-FER	10.0	ug/L	62	04-25-90	EPA 200.7	
NICKEL	10.0	ug/L	10.9	04-25-90	EPA 200.7	
LVER	10.0	ug/L	ND	04-25-90	EPA 200.7	
_ NC	10.0	ug/L	43.0	04-25-90	EPA 200.7	

= #EPA600/4-79-020, MARCH 1985

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= STANDARD METHOD, 16TH EDITION

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE

REPORT: 2388.04H

11701 BORMAN DRIVE, SUITE 340

DATE: 05-07-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2388.04

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW107

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS		
2,4-D	1.0	ND		
2,4,5-TP (SILVEX)	0.2	ND		

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

89%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

REPORT: 2388.04P

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2388.04

DATE SUBMITTED: 04-17-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW107

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	D
HEPTACHLOR EFOXIDE	0.05	ND
ENDOSULFAN I	0.05	. ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	. ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	- ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	MD
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 6

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE - RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.04V

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLD # 2388.04

DATE SUBMITTED: 04-17-90
DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW107

RESULTS REPORTED IN ug/L OR Parts Per Billion (FFB)

•	DET.				DET.	
* LATILES	LIMIT RESULTS		<u>TS</u>	<u>VOLATILES</u>	LIMIT	RESULTS
CHLOROMETHANE	10	ND		1,1,2,2-TETRACHLOROETHANE	5	ND
25 OMOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND
YL CHLORIDE	10 .	ND		TRANS-1,3-DICHLOROFROFENE	5	ND
ORCETHANE	10	ND		TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	5	16	B	DIBROMOCHLOROMETHANE	5	ND
TONE	10	3.	J	1,1,2-TRICHLOROETHANE	5	, ND
BON DISULFIDE	5	ND		BENZENE	5	ND
1,T-DICHLOROETHENE	5 .	ND		CIS-1,3-DICHLOROPROPENE	5	ND
-1-DICHLOROETHANE	5-	ND		2-CHLOROETHYLVINYLETHER	10	ND
NS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND
CROFORM	· 5	ND		2-HEXANONE	10	ND
1,2-DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND
UTANONE	10	ND		TETRACHLOROETHENE	5	ND
,,1-TRICHLOROETHANE	5	' ND		TOLUENE	5	ND
CARBON TETRACHLORIDE	5	ND		CHLOROBENZENE	5	ND
	10	ND		ETHYLBENZENE	5	ND
MODICHLOROMETHANE	5	ND		STYRENE	5	ND
• 				TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

MES & MODRE

1 BORMAN DRIVE, SUITE 340

LOUIS, MO 63146

N: DAVID FURINGTON

LE MATRIX: WATER

.0 # 2388.04

OD REF.: SW846-8270, EPA METHODOLOGY

ECT: 19943 - 002; FORD EARTH CITY

TIPLE ID: MW107

REPORT: 2388.048

DATE: 05-07-90

DATE SUBMITTED: 04-17-90

DATE EVIDABLES 04 1/ /

DATE EXTRACTED: 04-26-90

- DATE ANALYZED : 05-01-90

ENTVOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET.	RESULTS (ug/L)
ਜ਼ ਼ OL	10	ND	ACENAPHTHENE	10	ND
:I = 2-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
CHLOROPHENOL	10	ND	4-NITROPHENOL	50	ND
DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND.
-NZYL ALCOHOL	10	ND	2.6-DINITROTOLUENE	10	ND
2-DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND ·
THYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
MIST 2-CHLOROISOPROPYL) ETHER	10	ND	FLUORENE	10	ND
METHYLPHENOL	10	ND	4-NITROANILINE	50	ND
TTROSO-DI-n-PROFYLAMINE	10	ND	4.6-DINITRO 2-METHYLFHENOL	50	ND
E ACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
TROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND .
PHORONE	10	ир	HEXACHLOROBENZENE	10	ND
I TROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
2 4-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
NZOIC ACID	50	ND	ANTHRACENE	10	ND
= (2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
2.4-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
72,4-TRICHLOROBENZENE	10	ND	FYRENE	10	ND
HTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
4- HLOROANILINE	10	ND	3.3-DICHLOROBENZIDINE	20	ND
-XACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
HLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
ETHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
HEXACHLOROCYCLOPENTADIENE	10.	ND	DI-N-OCTYL PHTHALATE	10	ND
14,6-TRICHLOROPHENOL	10	ND	PENZO(B)FLUORANTHENE	10	ND
,5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
2 CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
NITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
ETHYLPHTHALATE	10	ND	DIBENZ(A.H)ANTHRACENE	10	ND
A ENAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
3-NITROANILINE	50	ND			

BA/BC SURROGATE RECOVERIES

TROBENZENE-	d5(35-114)	82%	2-FLUOROBIPHENY	L(43-116)	68%	TERPHENYL-d14	(33-141)	89%
ENOL-d5	(10-94)	59%	2-FLUOROPHENOL	(21-100)	29%	2,4,6-TRIBROMOFHEN	DL(10-123)	51%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY DUTSIDE OF GC LIMITS

SOUTHWEST LABORATORY OF UKLAHUIVIA, INC.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

T: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2388.05V

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2388.05

DATE SUBMITTED: 04-17-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: TR-1

RESULTS REPORTED IN ug/L OR Parts Fer Billion (FPB)

CLATILES	DET. LIMIT	Ŗ	ESUL	<u>TS</u>	VOLATILES	DET. Limit	RESULTS
ALPROMETHANE	10		ND		1,1,2,2-TETRACHLOROETHANE	5	ND
RO DMETHANE	10		ND		1,2-DICHLOROPROPANE	5	ND
NYL CHLORIDE	10		ND		TRANS-1.3-DICHLOROPROPENE	5	ND
ROETHANE .	10		ND		TRICHLOROETHENE	5	ND
ET YLENE CHLORIDE	5	2		J	DIBROMOCHLOROMETHANE	5	ND
==TONE	10		ND		1,1,2-TRICHLOROETHANE	5	ND
RRON DISULFIDE	5		ND		BENZENE	5	, ND
J. DICHLOROETHENE	5		ND		CIS-1,3-DICHLOROPROPENE	5	- ND
_ TO DICHLOROETHANE	5		ND		2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5		ND		BROMOFORM	5	ND
	5 .	6		B	2-HEXANONE	10	ND
, DICHLOROETHANE	5		ND		4-METHYL-2-PENTANONE	10	ND
PUTANONE	10		ND		TETRACHLOROETHENE	5	ND
1-TRICHLOROETHANE	5		ND		TOLUENE	5	ND
AF ON TETRACHLORIDE	5		ND		CHLOROBENZENE	5	.ND
INYL ACETATE	10		ND		ETHYLBENZENE	5 -	ND
<u>DM</u> ODIEHLOROMETHANE	5		ND		STYRENE	5	ND
-	-				TOTAL XYLENES	5	ND

GA/QC SURROGATE RECOVERIES

UENE-d8(88-110) 97% BROMOFLUORÓBENZENE(86-115) 93% 1,2-DICHLOROETHANE-d4(76-114) 102%

NOT DETECTED ABOVE QUANTITATION LIMIT
 ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
 ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
 SURROGATE RECOVERY OUTSIDE OF GC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

DAMES & MOORE

11701 Borman Drive

St. Louis. Missouri 63149

REPORT: G2705

REPORT DATE:

05/03/90

SWLO IDENTIFICATION

SAMPLE NO.:

2388.01 - 2388.05

DATE RECEIVED: 04/17/90

QA/QC

DESCRIPTION		PARAMETER	RESULTS	·
METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK	04/25/90 04/25/90 04/25/90 04/25/90 04/25/90 04/25/90	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER ZINC	<30 <5 <5 <5 <10 <10 <10 <10	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE	04/25/90 04/25/90 04/25/90 04/25/90 04/25/90 04/25/90 04/25/90 04/25/90	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER ZINC	102% 100% 115% 98% 104% 99% 86% 110%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY
MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE	MW105 MW105 MW105 MW105 MW105 MW105	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER ZINC	102% 100% 115% 98% 107% 99% 86% 110%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY
DUPLICATE DUPLICATE DUPLICATE DUPLICATE DUPLICATE DUPLICATE DUPLICATE DUPLICATE DUPLICATE	MW101 MW101 MW101 MW101 MW101 MW101 MW101 MW101	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER ZINC	0% 0% 0% 0% 17% 0% 0%	RPD RPD RPD RPD RPD RPD RPD RPD

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

DAMES & MOORE

11701 Borman Drive

St. Louis. Missouri 63149

REPORT: G2705.2

REPORT DATE:

05/03/90

SWLO IDENTIFICATION

2388.01 - 2388.05

BAMPLE NO.: DATE RECEIVED:

04/17/90

QA/QC

DESCRIPTION		PARAMETER	RESULTS	
METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK	05/01/90 05/02/90 05/01/90	ARSENIC LEAD SELENIUM THALLIUM TOTAL CYANIDE	<10 <3 <5 <10 <.01	ug/L ug/L ug/L ug/L mg/L
BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE	04/30/90 04/30/90 05/01/90 05/01/90 05/02/90 05/02/90 05/01/90	ARSENIC ARSENIC LEAD LEAD SELENIUM SELENIUM THALLIUM THALLIUM	101% 81% 99% 98% 98% 88% 98%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY
MATRIX SPIKE MARTIX SPIKE MATRIX SPIKE MATRIX SPIKE MATRIX SPIKE DUPLICATE DUPLICATE DUPLICATE DUPLICATE DUPLICATE	MW107 MW107 MW107	ARSENIC LEAD SELENIUM THALLIUM TOTAL CYANIDE ARSENIC LEAD SELENIUM THALLIUM	96% 64% 70% 110% 104% 0% 0% 0%	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY RPD RPD RPD RPD RPD
DUPLICATE	MW101	TOTAL CYANIDE	0%	RPD

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT:

DATE:

G2705.3

05-07-90

_IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: . WATER SWLO # METHOD BLANK

DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REFORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS		
2,4-D 2,4,5-TP (SILVEX)	1.0	ND ND		

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

81.7%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-07-90

REPORT: G2705.4

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE EXTRACTED: 04-17-90 DATE ANALYZED: 05-01-90

METHOD REFERENCE: SW846-8080, EFA METHODOLOGY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ПD
HEFTACHLOR EFOXIDE	0.05	ND
ENDOSULFAN I	0.05	. ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	. ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	- ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154)

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

DATE: 05-07-90

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Fer Billion (PFB)

LATILES	DET. LIMIT	RESULTS	VOLATILES	DET. LIMIT	RESULTS
	<u> </u>			#=11=1	
HLOROMETHANE	10	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
OMOMETHANE	10	ND	1.2-DICHLOROFROPANE	5	ND
NYL CHLORIDE	- 10	HD	TRANS-1,3-DICHLOROFROFENE	5	ND
HLOROETHANE	10	NID	TRICHLOROETHENE	5	11D
- THYLENE CHLORIDE	5	10	DIBROMOCHLOROMETHANE	5	ND
CETONE	10	ND	1,1,2-TRICHLOROETHANE	5	ND
ARBON DISULFIDE	5	ND	BENZENE	5	ND
1-DICHLOROETHENE	5	ND	CIS-1,3-DICHLOROFROFENE	5	ND
1-DICHLOROETHANE	5	ND	2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5	ND	BROMOFORM:	5	ND
HLOROFORM	.5	ND	2-HEXANDNE	10	ND
2-DICHLOROETHANE	5	ND	4-METHYL-2-PENTANONE	10	ND
BUTANONE	10	ND	TETRACHLOROETHENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TOLUENE	5	ND
#RBON TETRACHLORIDE	- 5	ND	CHLOROBENZENE	5	ND
NYL ACETATE	10	ND	ETHYLBENZENE	5	ND
-ROMODICHLOROMETHANE	5 .	ND	STYRENE	5	ND
<u>.</u>			TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

UENE-d8(88-110) 100% BROMOFLUOROBENZENE(86-115) 86% 1,2-DICHLOROETHANE-d4(76-114) 95%

- = NOT DETECTED ABOVE QUANTITATION LIMIT
- = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION
- = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE
- = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

MES & MOORE

1 1 BORMAN DRIVE, SUITE 340

₹. LOUIS, MO 63146

TN: DAVID FURINGTON

LE MATRIX: WATER

TILO # METHOD BLANK

MOD REF.: SW846-8270, EPA METHODOLOGY

PR ECT: 19943 - 002; FORD EARTH CITY

MPLE ID: METHOD BLANK

REFORT: G2705.6

DATE: 05-07-90

DATE EXTRACTED: 04-17-90

DATE ANALYZED: 04-26-90

10 10 10 10 10 10 10 10 10 10	D D D D D D D D D D D D D D D D D D D	ACENAPHTHENE 2,4-DINITROPHENOL 4-NITROPHENOL DIBENZOFURAN 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYL-PHENYLETHER FLUORENE 4-NITROANILINE	10 50 50 10 10 10 10	ND ND ND ND ND ND ND ND ND ND ND ND ND N
10 10 10 10 10 10 10 10	ND ND ND ND ND ND ND ND	4-NITROPHENOL DIBENZOFURAN 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYL-PHENYLETHER FLUORENE	50 10 10 10 10 10	ND ND ND ND ND
10 10 10 10 10 10 10	ND ND ND ND ND ND ND	DIBENZOFURAN 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYL-PHENYLETHER FLUORENE	10 10 10 10 10	ND ND ND ND
10 10 10 10 10 10	ND ND ND ND ND	2,4-DINITROTOLUENE 2,6-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYL-PHENYLETHER FLUORENE	10 10 10 10	ND ND ND
10 10 10 10 10	ND ND ND ND	2.6-DINITROTOLUENE DIETHYLPHTHALATE 4-CHLOROPHENYL-PHENYLETHER FLUORENE	10 10 10 10	ND ND ND
10 10 10 10	ND ND ND	DIETHYLFHTHALATE 4-CHLOROPHENYL-FHENYLETHER FLUORENE	10 10 10	ND ND
10 10 10 10	ND ND	4-CHLOROPHENYL-PHENYLETHER FLUORENE	10 10	ND
10 10 10	ND	FLUORENE	10	
10 10	ND			ND
10		4-NITROANILINE		
	ND		50	ND -
10		4,5-DINITRO 2-METHYLPHENOL	50	ИD
	ND	N-NITROSODIFHENYLAMINE(1)	10	ИD
10	ND	4-BROMOFHENYL-FHENYLETHER	10	11D
. 10	ND	HEXACHLOROBENZENE	10	П
10	ND	PENTACHLOROPHENOL	10	ND
10	ND	PHENANTHRENE	10	ИD
50	ND	ANTHRACENE	10	ND
10	ND	DI-N-BUTYLFHTHALATE	10	ND
10	ND	FLUORANTHENE	10	ND
10	ND	PYRENE	10	ND
10	ND	BUTYLBENZYLPHTHALATE	10	ND
10	ND	3,3-DICHLOROBENZIDINE	20	ND
10	ND	BENZO(A)ANTHRACENE	10	ND ·
10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
10	ND	CHRYSENE	10	ND
10	ND	DI-N-OCTYL PHTHALATE	10	ND
. 10	ND	BENZO(B)FLUORANTHENE	10	ND
50	ND	BENZO(K)FLUORANTHENE	10	· ND
10	ND	BENZO(A)PYRENE	10	ND
50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
10	ND	BENZO(G,H,I)PERYLENE	10	ND
50	ND	•		
	10 10 10 10 50 10 10 10 10 10 10 10 10 50 10	10 ND 10 ND	ND N-NITROSODIFHENYLAMINE(1) ND 4-PROMOPHENYL-PHENYLETHER ND HEXACHLOROBENZENE ND PENTACHLOROPHENOL ND PHENANTHRENE ND ANTHRACENE ND ANTHRACENE ND DI-N-BUTYLPHTHALATE ND PYRENE ND ND BUTYLBENZYLPHTHALATE ND BUTYLBENZYLPHTHALATE ND BENZO(A)ANTHRACENE ND BENZO(A)ANTHRACENE ND BIS(2-ETHYLHEXYL)PHTHALATE ND CHRYSENE ND DI-N-OCTYL PHTHALATE ND BENZO(B)FLUORANTHENE ND BENZO(B)FLUORANTHENE ND BENZO(A)PYRENE ND BENZO(A)PYRENE ND DIBENZ(A, H)ANTHRACENE ND DIBENZ(A, H)ANTHRACENE	10 ND N-NITROSODIFHENYLAMINE(1) 10 10 ND 4-BROMOPHENYL-PHENYLETHER 10 10 ND HEXACHLOROBENZENE 10 10 ND PENTACHLOROFHENDL 10 10 ND PHENANTHRENE 10 10 ND PHENANTHRENE 10 10 ND DI-N-BUTYLPHTHALATE 10 10 ND PYRENE 10 10 ND PYRENE 10 10 ND BUTYLBENZYLPHTHALATE 10 10 ND BENZO(A)ANTHRACENE 10 10 ND BENZO(A)ANTHRACENE 10 10 ND BIS(2-ETHYLHEXYL)PHTHALATE 10 10 ND BIS(2-ETHYLHEXYL)PHTHALATE 10 10 ND BENZO(B)FLUGRANTHENE 10 10 ND BENZO(B)FLUGRANTHENE 10 10 ND BENZO(B)FLUGRANTHENE 10 10 ND BENZO(A)PYRENE

QA/QC SURROGATE RECOVERIES

ROBENZENE-d5(35-114) 62% 2-FLUOROBIPHENYL(43-116) 55% TERPHENYL-d14 (33-141) 77% NOL-d5 (10-94) 83% 2-FLUOROPHENOL (21-100) 59% 2.4.6-TRIBROMOPHENOL(10-123) 65%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

_ MES & MOORE

01 BORMAN DRIVE, SUITE 340

LOUIS, MD 63146

TN: DAVID PURINGTON

REPORT: G2705.7

DATE: 05-07-90

PLE MATRIX: WATER

一見D # METHOD BLANK

_:THOD REF.: SW846-8270, EPA METHODOLOGY

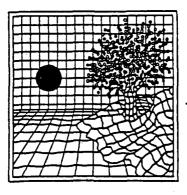
JECT: 19943 - 002; FORD EARTH CITY

PLE ID: METHOD BLANK

DATE EXTRACTED: 04-17-90 DATE ANALYZED : 04-26-90

RESULTS DET. RESULTS **IVOLATILES** LIMIT SEMIVOLATILES LIMIT (ug/L) (ug/L) ND 10 ND ACENAPHTHENE . 10 ENOL (2-CHLOROETHYL)ETHER 10 ND 2.4-DINITROPHENOL 50 ND ND HLOROPHENOL 10 ND 4-NITROPHENOL 50 3-DICHLOROBENZENE ND DIBENZOFURAN ND 10 10 ND T - DICHLOROBENZENE 10 2.4-DINITROTOLUENE 10 ND ZYL ALCOHOL 10 ND 2,6-DINITROTOLUENE 10 ND 2-DICHLOROBENZENE 10 ND DIETHYLPHTHALATE 10 ND ND 4-CHLOROPHENYL-PHENYLETHER ND ETHYLPHENOL 10 10 (2-CHLOROISOPROPYL)ETHER 10 FLUORENE 10 ND 4-NITROANILINE ND METHYLPHENOL 50 NITROSO-DI-n-PROFYLAMINE 10 ND 4,6-DINITRO 2-METHYLPHENOL 50 ND ACHLOROETHANE ND N-NITROSODIPHENYLAMINE(1) 10 ND ROBENZENE ND 4-BROMOPHENYL-PHENYLETHER 10 10 COPHORONE 10 ND HEXACHLOROBENZENE 10 ND #ITROPHENOL -ND **FENTACHLOROFHENOL** 10 ND 10 -DIMETHYLPHENOL ND PHENANTHRENE ND NZOIC ACID ND ANTHRACENE ND 50 10 LS(2-CHLDROETHOXY)METHANE 10 ND DI-N-BUTYLFHTHALATE 10 ND -DICHLOROFHENOL ND FLUORANTHENE 10 ND ₹,4-TRICHLOROBENZENE 10 ND PYRENE 10 ND PHTHALENE ND BUTYLBENZYLPHTHALATE 10 ND HLOROANILINE ND 3.3-DICHLOROBENZIDINE 20 ND ACHLOROBUTADIENE ND BENZO(A)ANTHRACENE 10 ND CHLORO-3-METHYLPHENOL 10 ND BIS(2-ETHYLHEXYL)PHTHALATE 10 ND ETHYLNAPHTHALENE 10 ND CHRYSENE 10 ND ACHLOROCYCLOPENTADIENE ND DI-N-OCTYL PHTHALATE 10 ND 4,6-TRICHLOROPHENOL ND BENZO(B)FLUORANTHENE 10 10 ND 4.5-TRICHLOROPHENOL 50 ND BENZO(K)FLUORANTHENE 10 ND HLORONAPHTHALENE 10 ND BENZO(A)PYRENE 10 ND ITROANILINE 50 ND INDENO(1,2,3-CD)PYRENE 10 ND METHYLPHTHALATE DIBENZ(A,H)ANTHRACENE ND 10 10 ND NAPHTHYLENE 10 ND BENZO(G,H,I)PERYLENE NITROANILINE 50

QA/QC SURROGATE RECOVERIES


	TROBENZENE-d	5(35-114)	78%	2-FLUOROBIPHENY	L(43-116)	69%	TERPHENYL-d14	(33-141)	89%
-1	INOL-d5	(10-94)	90%	2-FLUOROPHENOL	(21-100)	64%	2.4.A-TRIBROMOPHENO	DL (10-123)	77%

NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SURROSATE RECOVERY OUTSIDE OF QC LIMITS

May 8, 1990

David Purington
DAMES & MOORE
11701 Borman Drive, Suite 340
St. Louis, Missouri 63146

Project: 19943 - 002; Ford Earth City

Dear Mr. Purington:

Enclosed are the analytical results for your samples received in our laboratory on April 18, 1990, for the above captioned project.

Sample MW110 was originally extracted on April 19, 1990. The QC/MS analysis indicated that the surrogates did not meet the QC criteria. Hence, this sample was re-extracted on April 24, 1990, and later re-analysed. The data was reported for the re-analysed sample.

Per your request we have preformed a matrix spike and duplicate for the following samples; MW102 (semi-volatile), MW108 (Herbicides), MW110 (Pesticides), MW104 (Volatile)

If, in your review, you should have any questions or require additional information, please call.

Sincerely,

Randy Staggs

Project Manager

DAMES & MOORE

RS/jl

MAY 09 1990

ST. LOUIS. MISSOURA

Enclosures

260x25

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sampl	e Source	& Client	Ford			Fle	ld Personnel (S	ignature	;)
Projec	ci Tille		·		Job No. 19943.002]			
Dale	.Time	Sample I.D. No.	Sample Type	No. of Container	Sampling Site		Remark	S	•
1-17	9.00	16110	witi			C)oci, Seni, Ces	1 heats,	1~1
	10:00	100 CO3		7		_			
- -	10:30	11W108				_			
4-1	13:30	MW103	<u> </u>	2		_			<u> </u>
-	14:30	MWIOY				_	<u>U</u>		<u>.</u>
		TR.2	<u>U</u>	9		_	10c · ·		
-,						-			
				\	<u> </u>	4-			
<u> </u>				1		-			
	-/		/	1		-			7-
	/		[-			
 }	/					-		·	
$ \mathcal{I} $								•	
	ulahed by	· Date Time	Received			Tine	Received by:	Date	Tim
\ <i>I</i>	h ()	1/10 520	(Signature		(Signature)		(Signature)	· ·	
\sim ,	12/1/	$\langle 1'''' \rangle$	Will A	L ZISPOS OG					<u> </u>
	ished by nature)	Date Timo	Received (Relinquished by: Dato (Signature)	Time	Received by: (Signature)	Date	Tim
	italied by	; Date Time	kacelved l (Signature		Relinquished by: Date (Signature)	Time	Received by: (Signature)	Date	Time

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE IENT:

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON REPORT: 2397.01M

DATE: 05-07-90

SAMPLE MATRIX:

SWL0 # 2397.01

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110

PARAMETER	•	DÉT. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
OTAL CYANIDE		0.01	mg/L	ND	04-27-90	SM 412D
TOTAL METALS						
ARSENIC LEAD DERCURY ELENIUM THALLIUM NTIMONY ERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER		10.0 3.0 0.2 5.0 10.0 30.0 5.0 5.0 10.0 10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	05-02-90 05-01-90 05-01-90 05-02-90 05-01-90 04-25-90 04-25-90 04-25-90 04-25-90 04-25-90 04-25-90 04-25-90 04-25-90	EPA 206.2 EPA 239.2 EPA 245.1 EPA 270.2 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7

PA = #EPA600/4-79-020, MARCH 1985

= NOT DETECTED ABOVE QUANTITATION LIMIT

= STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE

REPORT: 2397.01H

11701 BORMAN DRIVE, SUITE 340

DATE: 05-08-90

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

'SWL0 # 2397.01

DATE SUBMITTED: 04-18-90

DATE EXTRACTED: 04-27-90

DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110

RESULTS REPORTED IN ug/L OR Parts Per Billion

DET. LIMIT	RESULTS
1.0	ND ND
	1.0

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

89.4%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.01P

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLD # 2397.01

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90

DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW110

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	· ND
TOXAPHENE	1.1	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.1	ND
ARDCHLOR-1260	1.1	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 100%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAME

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.01V

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLO # 2397.01

DATE SUBMITTED: 04-18-90

DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

VOLATILES	DET. LIMIT	RESULTS	S VOLATILES	DET. LIMIT	RESULTS
CHLOROMETHANE	10	ND	1,1,2,2-TETRACHLOROETHANE	5	ND
# BROMOMETHANE	10	ND	1,2-DICHLOROPROPANE	5	ND
LVINYL CHLORIDE	10	ND	TRANS-1,3-DICHLOROPROPENE	5	ND
CHLOROETHANE	10	ND	TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	5	16 E	DIBROMOCHLOROMETHANE	5	ND
TACETONE	10	4 JE	1,1,2-TRICHLOROETHANE	5	ND
-CARBON DISULFIDE	5	ND	BENZENE	5	ND
1,1-DICHLOROETHENE	5	ND	CIS-1,3-DICHLOROPROPENE	5	ND
-11,1-DICHLOROETHANE	5	ND	2-CHLOROETHYLVINYLETHER	10	ND
ATRANS-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
CHLOROFORM	5	. ND	2-HEXANONE	10	ND
1,2-DICHLOROETHANE	5	ND	4-METHYL-2-PENTANONE	10	ND
12-BUTANONE	10	ND	TETRACHLOROETHENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TOLUENE	5	ND
CARBON TETRACHLORIDE	5	ND	CHLOROBENZENE	5	ND
VINYL ACETATE	10	ND	ETHYLBENZENE	5	ND
BROMODICHLOROMETHANE	5	ND	STYRENE	5	ND
			TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(88-110) 96% BROMOFLUOROBENZENE(86-115) 92% 1,2-DICHLOROETHANE-d4(76-114) 100%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

S & MOORE

1 BORMAN DRIVE, SUITE 340

LOUIS, MO 63146

M: DAVID PURINGTON

PLE MATRIX: WATER

0 # 2397.01

OD REF.: SW846-8270, EPA METHODOLOGY

ECT: 19943 - 002; FORD EARTH CITY

IPLE ID: MW110

REPORT: 2397.01B

DATE: 05-08-90

DATE SUBMITTED:

04-18-90

DATE EXTRACTED: 04-24-90

DATE ANALYZED : 04-25-90

	· ·				

IVOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)	
HEEOL	20	ND	ACENAPHTHENE	20	ND	
2-CHLOROETHYL)ETHER	20	ND	2,4-DINITROPHENOL	100	ND	,
HLOROPHENOL	20	ND	4-NITROPHENOL	100	ND	
DICHLOROBENZENE	20	ND	DIBENZOFURAN	20	ND	
DICHLOROBENZENE	20	ND	2,4-DINITROTOLUENE	20	ND	
JZYL ALCOHOL	20	ND	2,6-DINITROTOLUENE	20	ND	
DICHLOROBENZENE	20	ND	DIETHYLPHTHALATE	20	8 J	
:- THYLPHENOL	20	ND	4-CHLOROPHENYL-PHENYLETHER	20	ND	
7(2-CHLORDISOPROPYL)ETHE	२ 20	ND	FLUORENE	20	ND	
<u>lie</u> thylphenol	20	ND	4-NITROANILINE	100	ND	
I- TROSD-DI-n-PROFYLAMINE	20	ND	4,6-DINITRO 2-METHYLPHENOL	100	ND	
IE CHLOROETHANE	20	ND	N-NITROSODIPHENYLAMINE(1)	20	ND	
ROBENZENE	20	ND	4-BROMOPHENYL-PHENYLETHER	20	ND	
TO HORONE	20	ND	HEXACHLOROBENZENE	20	ND	
TROPHENOL	20°	ND	PENTACHLOROPHENOL	20	ND	
71-DIMETHYLPHENOL	20	ND	PHENANTHRENE	20	ND	
ZOIC ACID	100	ND	ANTHRACENE	20	ND	
31 (2-CHLOROETHOXY) METHANE	20	ND	DI-N-BUTYLPHTHALATE	20	ND	
? _R -DICHLOROPHENOL	20	ND	FLUORANTHENE	20	ND	
2,4-TRICHLOROBENZENE	20	ND	PYRENE	20	ND	
NA HTHALENE	20	ND	BUTYLBENZYLPHTHALATE	20	ND	
1-1-1LOROANILINE	20	ND	3,3-DICHLOROBENZIDINE	40	ND	
CACHLOROBUTADIENE	20	ND	BENZO(A)ANTHRACENE	20	ND	
	20	ND	BIS(2-ETHYLHEXYL)PHTHALATE	20	ND	
2-ETHYLNAPHTHALENE	20	ND	CHRYSENE	20	ND	
"TACHLOROCYCLOPENTADIENE	20	MD	DI-N-OCTYL PHTHALATE	20	ND	
1.6-TRICHLOROPHENOL	20	ND	BENZO(B)FLUORANTHENE	20	ND .	
2, 5-TRICHLOROPHENOL	100	ND	BENZO(K)FLUORANTHENE	20	ND	
2-GHLORONAPHTHALENE	20	ND	BENZO(A)PYRENE	20	ND	
NITROANILINE	100	ND	INDENO(1,2,3-CD)PYRENE	20	ND	
ETHYLPHTHALATE	20	ND	DIBENZ(A,H)ANTHRACENE	20	ND	
ACENAPHTHYLENE	20	ND	BENZO(G,H,I)PERYLENE	20	ND "	
VITROANILINE	100	ND				
-				-		

QA/QC SURROGATE RECOVERIES

ROBENZENE-d5(35-114) 65% 2-FLUOROBIPHENYL(43-116) 62% TERPHENYL-d14 (33-141)(10-94)36% 2-FLUOROPHENOL (21-100) 18%* 2,4,6-TRIBROMOPHENOL(10-123)

= NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.02M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWLO # 2397.02

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW102

ARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
OTAL CYANIDE	0.01	mg/L	ND	04-27-90	SM 412D
TOTAL METALS					
RSENIC	10.0	ug/L	ND	05-02-90	EPA 206.2
LEAD	3.0	ug/L	ND	05-01-90	EPA 239.2
- <u>MERCURY</u>	0.2	ug/L	ND	04-25-90	EPA 245.1
ELENIUM	5.0	ug/L	ND.	05-02-90	EPA 270.2
* HALLIUM	10.0	ug/L	ND	05-01-90	EPA 279.2
ANTIMONY	30.0	ug/L	ND	04-25-90	EPA 200.7
*ERYLLIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
ADMIUM	5.0	ug/L	ND	04-25-90	EPA 200.7
TCHROMIUM ·	5.0	ug/L	ND	04-25-90	EPA 200.7
-LOPPER	10.0	ug/L	326	04-25-90	EPA 200.7
HICKEL	10.0	ug/L	13.8	04-25-90	EPA 200.7
SILVER	10.0	ug/L	ND	04-25-90	EPA 200.7
IZINC	10.0	ug/L	52.8	04-25-90	EPA 200.7

EPA = #EPA600/4-79-020, MARCH 1985

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

BM = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE -

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397:02H

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWL0 # 2397.02

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW102

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	RESULTS
2,4-D	1.0	ND
2,4,5-TP (SILVEX)	0.2	DN

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

93.7%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

 ${ t J}$ = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

_IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.02P

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWL0 # 2397.02

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW102

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-000	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ПD
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	· ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND ·
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	D
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 83%

ND = NOT DETECTED ABOVE GUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.02V

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLO # 2397.02

DATE SUBMITTED: 04-18-90 DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW102

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

OLATILES	DET.	RESULTS		VOLATILES	DET. LIMIT	RESULTS
LOROMETHANE	10	ND		1,1,2,2-TETRACHLORGETHANE	5	ND
- TROMOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND
VINYL CHLORIDE	10	ND		TRANS-1,3-DICHLOROPROPENE	5	ND
HLOROETHANE	-10	ND		TRICHLOROETHENE	5	ND
ETHYLENE CHLORIDE	5	16	В	DIBROMOCHLOROMETHANE	5	D
ACETONE	10	ND		1,1,2-TRICHLOROETHANE	5	ND
ARBON DISULFIDE	5	ND		BENZENE	5	ND
,1-DICHLORGETHENE	5	ND.		CIS-1,3-DICHLOROPROPENE	5	ND
-1,1-DICHLOROETHANE	5	3	J	2-CHLOROETHYLVINYLETHER	10	ND
FRANS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND
HLOROFORM	5	ND		2-HEXANONE	10	ND
7,2-DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND
Z-BUTANONE	10	ND		TETRACHLOROETHENE	5	ND
-1,1-TRICHLOROETHANE	5	ND		TOLUENE	5	ND
MARBON TETRACHLORIDE	5	ND		CHLOROBENZENE	5	ND
VINYL ACETATE	10	ND		ETHYLBENZENE	5	ND.
ROMODICHLOROMETHANE	5	ND		STYRENE	5	ND
				TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

OLUENE-d8(88-110) 98% BROMOFLUOROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 100%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

S & MODRE 1 BORMAN DRIVE, SUITE 340 LOUIS, MO 63146 N: DAVID PURINGTON

DATE: 05-08-90

REPORT: 2397.02B

LE MATRIX: WATER 0 # 2397.02

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90

MIOD REF.: SW846-8270, EPA METHODOLOGY JECT: 19943 - 002; FORD EARTH CITY

DATE ANALYZED : 04-24-90

PLE ID: MW102

IVOLATILES	DET.	RESULTS (ug/L)	SEMIVOLATILES	DET.	RESULTS (ug/L)
HOL	10	ND	ACENAPHTHENE	10	ND
I (2-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND.
:HLOROPHENOL	10	ND	4-NITROPHENOL	50	ND
DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
-DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
TZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND .
- ETHYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
■ (2-CHLOROISOPROPYL) ETHER		ND	FLUORENE	10	ND
1ETHYLPHENOL	10	ND	4-NITROANILINE	50	ND
TITROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
E ACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
TROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
<u></u> →PHORONE	10	ND	HEXACHLOROBENZENE	10	ND.
- ITROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
	10	ND	PHENANTHRENE	10	ND
NZOIC ACID	50	ND	ANTHRACENE	10	- ND
(2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
2,4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
HTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
HLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
KACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
#HLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	2 JB
ETHYLNAPHTHALENE	10	ND	CHRYSENE	10	1 J
LEXACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
4,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
: CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
NITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
METHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
ENAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
NITROANILINE	50	ND			

QA/QC SURROGATE RECOVERIES

TROBENZENE-d5(35-114) 71% 2-FLUOROBIPHENYL(43-116) 68% TERPHENYL-d14 60% (33-141)ENOL-d5 (10-94)49% 2-FLUDROPHENOL (21-100) 35% 2,4,6-TRIBROMOPHENOL(10-123) 34%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE IENT:

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON DATE: 05-07-90

2397.03M

REPORT:

SAMPLE MATRIX: WATER

SWL0 # 2397.03

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW108

RAMETER		DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TOTAL CYANIDE		0.01	mg/L	ND	04-27-90	SM 412D
TAL METALS						
**RSENIC		10.0	ug/L	ND	05-02-90	EPA 206.2
≟ AD		3.0	ug/L	ND	05-01-90	EPA 239.2
RCURY		0.2	ug/L	ND	04-25-90	EPA 245.1
SELENIUM	,	5.0	ug/L	ND	05-02-90	EPA 270.2
<u>l</u> HALLIUM	•	10.0	ug/L	ND	05-01-90	EPA 279.2
ITIMONY		30.0	ug/L	34.5	04-25-90	EPA 200.7
美 RYLLIUM	•	5.0	ug/L	ND	04-25-90	EPA 200.7
MUIMOR		5.0	ug/L	ND	04-25-90	EPA 200.7
#ROMIUM .	* *	5.0	ug/L	ND	04-25-90	EPA 200.7
OPPER		10.0	ug/L	81	04-25-90	EPA 200.7
NICKEL		10.0	ug/L	14.0	04-25-90	EPA 200.7
#LVER	•	10.0	ug/L	ND	04-25-90	EPA 200.7
INC		10.0	ug/L	44.5	04-25-90	EPA 200.7

A = #EPA600/4-79-020, MARCH 1985

= NOT DETECTED ABOVE QUANTITATION LIMIT

TM = STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.03H

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLD # 2397.03

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW108

RESULTS REPORTED IN ug/L OR Parts Per Billion

•	DET.	
HERBICIDES	LIMIT	RESULTS
2,4-0	1.0	ND
2,4,5-TP (SILVEX)	0.2	ND

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

87.9%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE IENT:

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.03P

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLO # 2397.03

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90 DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW108

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND ·
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	· ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	- ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154)

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.03V

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLD # 2397.03

DATE SUBMITTED: 04-18-90
DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW108

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

<u> JOLATILES</u>	DET. LIMIT	RES	SUL	<u>TS</u>	VOLATILES	DET. LIMIT	RESULTS
HLOROMETHANE	10	h	ND.		1,1,2,2-TETRACHLOROETHANE	5	ND
-3ROMOMETHANE	10	ŀ	ND		1,2-DICHLOROPROPANE	5	ND
JINYL CHLORIDE	10	ŀ	av		TRANS-1,3-DICHLOROPROPENE	5	ND
HLOROETHANE	10	h	ďΡ		TRICHLOROETHENE	5	ND
HETHYLENE CHLORIDE	5	15		В	DIBROMOCHLOROMETHANE	5	ND
ACETONE	10	ì	ND.		1,1,2-TRICHLOROETHANE	5	ND
ARBON DISULFIDE	5	ł	D		BENZENE	5	ND
,1-DICHLOROETHENE	5	3		J	CIS-1,3-DICHLOROPROPENE	5	D
1,1-DICHLOROETHANE	5	ŧ	ND.		2-CHLOROETHYLVINYLETHER	10	ND
RANS-1,2-DICHLOROETHENE	5 .	1	ND		BROMOFORM	5	ND
HLOROFORM	5	1	ND		2-HEXANONE	10	NĎ
,2-DICHLOROETHANE	5	1	ND		4-METHYL-2-PENTANONE	10	ND
_2-BUTANONE	10	i	ND		TETRACHLOROETHENE	5	ND
1,1,1-TRICHLOROETHANE	5	1	D		TOLUENE	5	ND
CARBON TETRACHLORIDE	, 5	l	ND		CHLOROBENZENE	5	ND
VINYL ACETATE	10	1	ND		ETHYLBENZENE	5	ND
ROMODICHLOROMETHANE	5	1	ND		STYRENE	5	ND
	•				TOTAL XYLENES	5	ND

8A/8C SURROGATE RECOVERIES

TOLUENE-d8(88-110) 100% BROMOFLUOROBENZENE(86-115) 95% 1,2-DICHLOROETHANE-d4(76-114) 103%

D = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

& MOORE

707 BORMAN DRIVE, SUITE 340

- LOUIS, MO 63146

DAVID PURINGTON

MPLE MATRIX: WATER

2397.03

D REF.: SW846-8270, EPA, METHODOLOGY ROJECT: 19943 - 002; FORD EARTH CITY

PLE ID: MW108

REPORT: 2397.03B

DATE: 05-08-90

DATE SUBMITTED: 04-18-90

DATE EXTRACTED:

04-19-90

DATE ANALYZED : 04-24-90

MIVOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
iz DL	10	ND	ACENAPHTHENE	10	ND
IS(2-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
OROPHENOL	10	ND	4-NITROPHENOL	50	ND
OICHLOROBENZENE	10	- ND	DIBENZOFURAN	10	ND
,4-DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
ZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
THYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
IS(2-CHLORDISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
THYLPHENOL	10	ND	4-NITROANILINE	50	ND
TROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
EXACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
DOBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
HORONE	10	ND	HEXACHLOROBENZENE	10	ND
-NITROPHENOL	10 .	ND	PENTACHLOROPHENOL	10	ND
_4-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
OIC ACID	50	ND	ANTHRACENE	10	ND
2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
,4-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
THALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
-CHLOROANILINE	10	ND	3.3-DICHLOROBENZIDINE	20	ND
EXACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
LORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
:-TETHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
EXACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
:-CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
TROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
ETHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	· ND
CENAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
:=NITROANILINE	50	ND		•	

QA/QC SURROGATE RECOVERIES

65% 'HENOL-d5 (10-94) 42% 2-FLUOROPHENOL (21-100) 29% 2,4,6-TRIBROMOPHENOL(10-123)

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.04M

DATE: 05-07-90

SAMPLE MATRIX: WATER

SWL0 # 2397.04

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW103

RAMETER		DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
IDTAL CYANIDE		0.01	mg/L	ND	04-27-90	SM 412D
TAL METALS	·					
RSENIC		10.0	ug/L	ND	05-02-90	EPA 206.2
AD		3.0	ug/L	ND	05-01-90	EPA 239.2
RCURY		0.2	ug/L	ND	04-25-90	EPA 245.1
<u>EELENIUM</u>	•	5.0	ug/L	.ND	05-02-90	EPA 270.2
HALLIUM		10.0	ug/L	ND	05-01-90	EPA 279.2
TIMONY	•	30.0	ug/L	34.5	04-25-90	EPA 200.7
BERYLLIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
ZADMIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
ROMIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
D PPER		10.0	ug/L	43°	04-25-90	EPA 200.7
HICKEL		10.0	ug/L	ND	04-25-90	EPA 200.7
LVER		10.0	ug/L	ND	04-25-90	EPA 200.7
E.NC		10.0	ug/L	34.1	04-25-90	EPA 200.7

A = #EPA600/4-79-020, MARCH 1985

D = NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ STANDARD METHOD, 16TH EDITION

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

REPORT: 2397.04H

11701 BORMAN DRIVE, SUITE 340

DATE: 05-08-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLD # 2397.04

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-27-90
DATE ANALYZED: 05-03-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW103

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	 RESULTS
2,4-D 2,4,5-TP (SILVEX)	1.0	 ND ND

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

84.5%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

2397.04P REPORT:

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWL0 # 2397.04

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90

DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW103

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	DM
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLORDANE	0.5	ND
TOXAPHENE	1.1	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254 .	1.1	ND
ARUCHLOR-1260	1.1	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154)

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

TENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.04V

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWL0 # 2397.04

DATE SUBMITTED: 04-18-90 DATE ANALYZED: 04-20-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW103

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

<u>YOLATILES</u>	DET.	RESUL	.TS	<u>VOLATILES</u>	DET. LIMIT	RESULTS
OROMETHANE	10	ND		1,1,2,2-TETRACHLORDETHANE	5	ND
BROMOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND
"INYL CHLORIDE	10	ND		TRANS-1,3-DICHLOROPROPENE	5	ND .
OROETHANE	10	ПN		TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	5	26	B	DIBROMOCHLOROMETHANE	5	ND
ACETONE	10	17	B	1,1,2-TRICHLOROETHANE	5	ND
RBON DISULFIDE	5	ND		BENZENE	5	ND
TEL-DICHLOROETHENE	5	ND		CIS-1,3-DICHLOROPROPENE	5	ND
1,1-DICHLOROETHANE	5	ФИ		2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND
OROFORM	- 5	ND		2-HEXANONE	10	ND
1,2-DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND
- 2_BUTANONE	10	ND		TETRACHLOROETHENE	5	ND
1,1-TRICHLOROETHANE	5	DM		TOLUENE	5	8 ·
TERBON TETRACHLORIDE	5	ND		CHLOROBENZENE	5	· ND
<u>V</u> INYL ACETATE	10	ND		ETHYLBENZENE	5	2 J
DMODICHLOROMETHANE	5	ND		STYRENE	5	ND
· - 				TOTAL XYLENES	5	10

QA/QC SURROGATE RECOVERIES

DLUENE-d8(88-110) 99% BROMOFLUOROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 93%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

& MOORE BORMAN DRIVE, SUITE 340 Cours, MO 63146

DATE: 05-08-90

REPORT: 2397.04B

DAVID PURINGTON

E MATRIX: WATER

DATE SUBMITTED: 04-18-90

b # 2397.04

04-19-90 DATE EXTRACTED:

DD REF.: SW846-8270, EPA METHODOLOGY :0 CT: 19943 - 002; FORD EARTH CITY

DATE ANALYZED : 04-24-90

PLE ID: MW103

٠ ـ					•	
		DET.	RESULTS		DET.	RESULTS
	TVOLATILES	LIMIT	(ug/L)	SEMIVOLATILES	LIMIT	(ug/L)
11	DL.	10	ND	ACENAPHTHENE	10	ND
	E-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
_	HLOROPHENOL	10	ND	4-NITROPHENOL	50	ND
	DICHLOROBENZENE	10	UN	DIBENZOFURAN	10	ND
	DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
	ZYL ALCOHOL	10	ND .	2,6-DINITROTOLUENE	10	ND
	_DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
-	THYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
T	72-CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
	ETHYLPHENOL	10	ND	4-NITROANILINE	50	ND .
	TROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
Ξ	CHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
	ROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
,	PHORONE	10	ND	HEXACHLOROBENZENE	10	ND
_	TROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
	-DIMETHYLPHENOL	10 .	ND	PHENANTHRENE	10	ND
i	ZOIC ACID	50	ND	ANTHRACENE	10	ND
1	(2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
	-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
	,4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
	HTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
	HLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
	*ACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
` (HLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
: -	ETHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
	YACHLOROCYCLOPENTADIENE	10	ND	DI-N-OCTYL PHTHALATE	10	ND
	A,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND ND
٠,	,5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
21	HLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
**	NITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
	ETHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
4	NAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	.ND
	NITROANILINE	50	ND		-	

QA/QC SURROGATE RECOVERIES

TROBENZENE-	d5(35-114)	78%	2-FLUOROBIPHENY	L(43-116)	75%	TERPHENYL-d14	(33-141)	81%
ENOL-d5	(10-94)	52%	2-FLUOROPHENOL	(21-100)	34%	2.4.6-TRIBROMOPHEN	OL(10-123)	30%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.05M

DATE: 05-07-90

SAMPLE MATRIX:

WATER

SWLD # 2397.05

DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW104

→ ARAMETER		DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TAL CYANIDE		0.01	mg/L	ND	04-27-90	SM 412D
TOTAL METALS						
ARSENIC	• •	10.0	ug/L	ND	05-02-90	EPA 206.2
LEAD		3.0	ug/L	ND	05-01-90	EPA 239.2
RCURY	•	0.2 5.0	ug/L ug/L	ND ND	04-25-90 05-02-90	EPA 245.1 EPA 270.2
-THALLIUM		10.0	ug/L	ND	05-01-90	EPA 279.2
NTIMONY		30.0	ug/L	ND	04-25-90	EPA 200.7
- RYLLIUM		5.0	ug/L	ND	04-25-90	EPA 200.7
CADMIUM		5.0	ug/L	ND .	04-25-90	EPA 200.7
HROMIUM DPPER		5.0 10.0	ug/L ug/L	ND 131	04-25-90 04-25-90	EPA 200.7 EPA 200.7
NICKEL	. *	10.0	ug/L	ND	04-25-90	EPA 200.7
-SILVER		10.0	ug/L	ND	04-25-90	EPA 200.7
INC		10.0	ug/L	40.7	04-25-90	EPA 200.7

 $^{2}A = \#EPA600/4-79-020, MARCH 1985$

= NOT DETECTED ABOVE QUANTITATION LIMIT

= STANDARD METHOD, 16TH EDITION

SOUTHWEST LABORATORY OF UNLAHOWA, 1110.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

REPORT: 2397.05H

11701 BORMAN DRIVE, SUITE 340

DATE: 05-08-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER

SWLO # 2397.05

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-03-90

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW104

RESULTS REPORTED IN ug/L OR Parts Per Billion

HERBICIDES	DET. LIMIT	•	RESULTS
2,4-D	1.0	•	ND
2,4,5-TP (SILVEX)	0.2		ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

79.6%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.05P DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLO # 2397.05

DATE SUBMITTED: 04-18-90 DATE EXTRACTED: 04-19-90 DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: MW104

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	0.05	ND
BETA-BHC	0.05	ND
DELTA-BHC	0.05	ND
GAMMA-BHC(LINDANE)	0.05	ND
HEPTACHLOR	0.05	ND
ALDRIN	0.05	ND
HEPTACHLOR EPOXIDE	0.05	ND
ENDOSULFAN I	0.05	ND
DIELDRIN	0.1	ND
4,4-DDE	0.1	ND
ENDRIN	0.1	ND
ENDOSULFAN II	0.1	ND
4,4-DDD	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
METHOXYCHLOR	0.5	ND
ENDRIN KETONE	0.1	ND .
ALPHA-CHLORDANE	0.5	ND
GAMMA-CHLDRDANE	0.5	ND
TOXAPHENE	1.0	ND
AROCHLOR-1016	0.5	ND
AROCHLOR-1221	0.5	ND
AROCHLOR-1232	0.5	'ND
AROCHLOR-1242	0.5	ND
AROCHLOR-1248	0.5	ND
AROCHLOR-1254	1.0	ND
ARUCHLUR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154)

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany. Suite "C". Broken Arrow, Oklahoma 74012. 918-251-2858

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: 2397.05V

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWL0 # 2397.05

DATE SUBMITTED: 04-18-90 DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW104

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET.					DET.	
LATILES	LIHIT	R	ESULT	<u>s</u>	VOLATILES	LIHIT	RESULTS
CHEOROMETHANE	10		ND		1,1,2,2-TETRACHLOROETHANE	5	ND
OMOMETHANE	10		ND		1,2-DICHLOROPROPANE	5	ND
YL CHLORIDE	10		ND		TRANS-1,3-DICHLOROPROPENE	5	ND
CORDETHANE	10		ND		TRICHLOROETHENE	5	ND
METHYLENE CHLORIDE	5	1	J	В	DIBROMOCHLOROMETHANE	5	ND
ETONE	10	5	J	B	1,1,2-TRICHLOROETHANE	5	ND
BON DISULFIDE	5		ND		BENZENE	5	ND
1,1-DICHLOROETHENE	5		ND		CIS-1,3-DICHLOROPROPENE	5	ND
- DICHLOROETHANE	5		ND		2-CHLOROETHYLVINYLETHER	10	ND
ANS-1,2-DICHLOROETHENE	5		ND -		BROMOFORM	5 .	ND
CALOROFORM	5		ND		2-HEXANONE	10	ND
2-DICHLOROETHANE	5		ND		4-METHYL-2-PENTANONE	10	ND
BUTANONE	10		ND		TETRACHLOROETHENE	5	ND
"I 1,1-TRICHLORGETHANE	5		ND		TOLUENE	5	ND
CARBON TETRACHLORIDE	5		ND		CHLOROBENZENE	5	ND
NYL ACETATE	10		ND		ETHYLBENZENE	5	ND
- DMODICHLOROMETHANE	5		ND		STYRENE	5	ND
-		•			TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

IOLUENE-d8(88-110) 103% BROMOFLUOROBENZENE(86-115) 95% 1,2-DICHLOROETHANE-d4(76-114) 104%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

& MOORE BORMAN DRIVE, SUITE 340 OUIS. MO 63146 DAVID PURINGTON .

REPORT: 2397.05B

DATE: 05-08-90

E MATRIX: WATER # 2397.05

DATE SUBMITTED: 04-18-90

D REF.: SW846-8270, EPA METHODOLOGY

DATE EXTRACTED: 04-19-90

CT: 19943 - 002; FORD EARTH CITY

DATE ANALYZED : 04-24-90

E ID: MW104

ODLATILES	DET. LIHIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (uq/L)
T: L	10	ND	ACENAPHTHENE	10	ND
;∰-CHLOROETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
LOROPHENOL	10	ND	4-NITROPHENOL	50	ND
- ICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
1 ICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
TYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
1 HYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
- CHLOROISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
THYLPHENOL	10	ND	4-NITROANILINE	50	ND
TROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
CHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
PRENZENE	. 10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
HORONE	10	ND	HEXACHLOROBENZENE	10	ND
TROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
DIC ACID	50	ND	ANTHRACENE	10	ND
SEC-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
4 DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
THALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
CLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
CHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
LORO-3-METHYLPHENOL	10-	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
THYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
XACHLOROCYCLOPENTADIENE	10	D	DI-N-OCTYL PHTHALATE	10	ND
_6-TRICHLOROPHENOL	.10	ND	BENZO(B)FLUORANTHENE	10	ND
- 5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
OFLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
TROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND .
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
APHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
LTTROANILINE	50	ND			
<u></u>					•

QA/QC SURROGATE RECOVERIES

OBENZENE-d5(35-114) 75% 80% 2-FLUOROBIPHENYL(43-116) 75% TERPHENYL-d14 (33-141) (10-94)48% 2-FLUGROPHENGL (21-100) 32% 2,4,6-TRIBROMOPHENGL(10-123)

NOT DETECTED ABOVE QUANTITATION LIMIT ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE SURROGATE RECOVERY OUTSIDE OF OC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON '

REPORT: 2397.06V

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLD # 2397.06

DATE SUBMITTED: 04-18-90
DATE ANALYZED: 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: TR-2

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

	DET.				DET.	
OLATILES	LINIT	RESU	<u>.TS</u>	VOLATILES	LIMIT	RESULTS
CHLOROMETHANE	10	ND		1,1,2,2-TETRACHLOROETHANE	5	ND
"_BROMOMETHANE	10	ND		1,2-DICHLOROPROPANE	5	ND .
INYL CHLORIDE	10	ND		TRANS-1,3-DICHLOROPROPENE	5	. ND
CHLOROETHANE	10	ND		TRICHLOROETHENE	5	ND
_METHYLENE CHLORIDE	5	18	В	DIBROMOCHLOROMETHANE	5	ND
ACETONE	10	2	JB	1,1,2-TRICHLOROETHANE	\$	ND
- CARBON DISULFIDE	5	ND		BENZENE	5	ND
1,1-DICHLOROETHENE	- 5	ND		CIS-1,3-DICHLOROPROPENE	5	ND
1,1-DICHLOROETHANE	- 5	ND		2-CHLOROETHYLVINYLETHER	10	ND
TRANS-1,2-DICHLOROETHENE	5	ND		BROMOFORM	5	ND
CHLOROFORM	5	ND		2-HEXANONE	10	ND
1,2-DICHLOROETHANE	5	ND		4-METHYL-2-PENTANONE	10	ND
2-BUTANONE	10	ND		TETRACHLOROETHENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND		TOLUENE	5	ND
CARBON TETRACHLORIDE	- 5	ND		CHLOROBENZENE	5	ND
VINYL ACETATE	10	ND		ETHYLBENZENE	5	П
BROMODICHLOROMETHANE	5	ND	,	STYRENE	5	ND
				TOTAL XYLENES	5	ND

QA/QC SURROGATE RECOVERIES

TOLUENE-d8(88-110) 104% BROMOFLUOROBENZENE(86-115) 97% 1,2-DICHLOROETHANE-d4(76-114) 106%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

MES & MOORE 1701 Borman Drive

. Louis. Missouri 63149

REPORT: G2704

REPORT DATE: 05/03/90

LO IDENTIFICATION

AMPLE NO.:

2397.01 - 2397.06

TE RECEIVED: 04/18/90

QA/QC

DESCRIPTION		PARAMETER	RESULTS
ETHOD BLANK		LEAD THALLIUM	<3 ug/L <10 ug/L
LANK SPIKE LANK SPIKE BLANK SPIKE BLANK SPIKE	05/01/90 05/01/90 05/01/90 05/01/90	LEAD LEAD THALLIUM THALLIUM	99% RECOVERY 98% RECOVERY 98% RECOVERY 95% RECOVERY

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON REPORT: G2704.2

DATE: 05-08-90

SAMPLE MATRIX: WATER
SWLO # 2397.03 (MS/MSD)
SAMPLE ID: MW108 (MS/MSD)

HERBICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

	SPIKE ADDED (ug/L)	AMT. FOUND SMP. (ug/L)	AMT. FOUND MS (ug/L)	PERCENT RECOVERY	
2,4-D 2,4,5-TP (SILVEX)	166.7 16.7	0	129.5 14.8	77.7 88.6	

	AMT. FOUND MSD (ug/L)	PERCENT RECOVERY	RECOVERY PERCENT DIFFERENCE		
2,4-D	124.8	74.9	3.7		
2,4,5-TP (SILVEX)	14.3	85.6	3.4		

1700 W. Albany Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: G2704.3

DATE: 05-08-90

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

SAMPLE ID: BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

BETA-BHC C	0.05 0.05 0.05 0.05 0.05	ND ND ND ND
BETA-BHC C	0.05 0.05 0.05 0.05	ND ND ND
DEL TA-RHC).05).05).05	ND ND ND
).05).05	ND ND
GAMMA-RHC(LINDANE)	0.05	ND
HEPTACHI OR		
ALDRIN		ND
HEPTACHLOR EPOXIDE	0.05	ND
	0.05	ND
DIELDRIN).1	ND
4,4-DDE (ND
	0.1	ND
	0.1	ND
	0.1	ND
ENDOSULFAN SULFATE	0.1	ND
4,4-DDT	0.1	ND
4,4-DDT (0.5	ND
		ND
	0.5	ND
	-	ND
	1.0	ND
	0.5	
		ND
	0.5	ND
	0.5	ND
	0.5	ND
	1.0	ND
AROCHLOR-1260	1.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-154) 95%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE IENT:

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVE PURINGTON

REPORT: G2704.4

DATE: 05-08-90

SAMPLE MATRIX: WATER SWLD # 2397.01 (MS/MSD) DATE SUBMITTED: 04-18-90

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: MW110 (MS/MSD)

PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

•	SPIKE ADDED (ug/L)	AMT. FOUND (SAMPLE) (ug/L)	AMT. FOUND (MS) (ug/L)	MS PERCENT RECOVERY
•				
AMMA-BHC	0.40	0	0.45	112.5%
TEPTACHLOR	0.40	0	0.44	110.0%
LDRIN	0.40	0	0.43	107.5%
IELDRIN	1.00	0	1.20	120.0%
NDRIN	1.00	0	1.30	130.0%
,4'-DDT	1.00	O	1.30	130.0%

<u> </u>	AMT. FOUND (MSD) (ug/L)	MSD PERCENT RECOVERY	RELATIVE PERCENT DIFFERENCE	
			,	
SAMMA-BHC	0.40	100.0%	11.8%	
HEPTACHLOR	0.41	102.5%	7.1%%	
ALDRIN	0.38	95.0%	12.3%	
DIELDRIN	1.10	110.0%	8.7%	
ENDRIN	1.10	110.0%	16.7%	
1,4'-DDT	1.20	120.0%	8.0%	•

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT:

DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVID PURINGTON

REPORT: G2704.5

•

DATE: 05-08-90

SAMPLE MATRIX: WATER

SWLO # METHOD BLANK

DATE ANALYZED : 04-18-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

- PLATILES	DET.	RESULTS	<u>VOLATILES</u>	DET.	RESULTS
HLOROMETHANE	10	ND	1,1,2,2-TETRACHLORGETHANE	5	ND
ROMOMETHANE	10	ND	1,2-DICHLOROPROPANE	5	П
VINYL CHLORIDE	10	ND	TRANS-1,3-DICHLOROPROPENE	5	ND
THLOROETHANE	10	ND	TRICHLOROETHENE	5	ND
ETHYLENE CHLORIDE	- 5	10	DIBROMOCHLOROMETHANE	5	ND
ACETONE	10	3 J	1,1,2-TRICHLOROETHANE	5	ND
TARBON DISULFIDE	5	ND	BENZENE	5	ND
,1-DICHLORGETHENE	5	ND ·	CIS-1,3-DICHLOROPROPENE	5	ND
,1-DICHLOROETHANE	5	ND	2-CHLOROETHYLVINYLETHER	10	ND
TRANS-1,2-DICHLOROETHENE	5	ND	BROMOFORM	5	ND
HLOROFORM	5	ND	2-HEXANONE	10	ND
- ,2-DICHLOROETHANE	5	ND	4-METHYL-2-PENTANONE	10	ND
Z-BUTANONE	10	ND	TETRACHLOROETHENE	5	ND
1,1,1-TRICHLOROETHANE	5	ND	TOLUENE	5	ND
ARBON TETRACHLORIDE	5	ND	CHLOROBENZENE	5	ND
■INYL ACETATE	10	ND	ETHYLBENZENE	5	ND
PROMODICHLOROMETHANE	5	ND	STYRENE	5	ND
· 🔹			TOTAL XYLENES	5	ďИ

QA/QC SURROGATE RECOVERIES

OLUENE-d8(88-110) 100% BROMOFLUOROBENZENE(86-115) 86% 1,2-DICHLOROETHANE-d4(76-114) 95%

D = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

DATE: 05-08-90

REPORT: G2704.6

ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER SWLO # METHOD BLANK

DATE ANALYZED : 04-20-90

METHOD REFERENCE: SW846-8240, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/L OR Parts Per Billion (PPB)

OLATILES	DET. LIMIT	RESU	LTS	VOLATILES	DET. LIMIT	RESULTS
CHLOROMETHANE	10	ND)	1,1,2,2-TETRACHLOROETHANE	5	ND
- ROMOMETHANE	10	ND)	1,2-DICHLOROPROPANE	5	ND
INYL CHLORIDE	10	ND)	TRANS-1,3-DICHLOROPROPENE	5	ND
CHLOROETHANE	10	NĎ	1	TRICHLOROETHENE	5	ND
ENETHYLENE CHLORIDE	5	4	J	DIBROMOCHLOROMETHANE	5	ND
CETONE	10	4	J	1,1,2-TRICHLOROETHANE	5	ND
CARBON DISULFIDE	5.	ND)	BENZENE	5	ND
i-1-DICHLOROETHENE	5	ND)	CIS-1,3-DICHLOROPROPENE	5	ND
-1,1-DICHLOROETHANE	5	ND)	2-CHLOROETHYLVINYLETHER	10	ND
TRANS-1,2-DICHLOROETHENE	5	ND)	BROMOFORM	5	ND
CHLOROFORM	5	ND)	2-HEXANONE	10	ND
1,2-DICHLOROETHANE	5	ND)	4-METHYL-2-PENTANONE	10	ND
2-BUTANONE	10	ND)	TETRACHLOROETHENE	5	ND
ma1,1,1-TRICHLOROETHANE	5	NI)	TOLUENE	5	ND
CARBON TETRACHLORIDE	5	NE)	CHLOROBENZENE	5	ND
TVINYL ACETATE	10	NI)	ETHYLBENZENE	5	ND
BROMODICHLOROMETHANE	5	NI)	STYRENE	5	ND
				TOTAL XYLENES	5	ND

GA/GC SURROGATE RECOVERIES

TOLUENE-d8(88-110) 99% BROMOFLUOROBENZENE(86-115) 94% 1,2-DICHLOROETHANE-d4(76-114) 97%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

NT: DAMES & MOORE

11701 BORMAN DRIVE, SUITE 340

ST. LOUIS, MO 63146

ATTN: DAVE PURINGTON

SAMPLE MATRIX: WATER
SWLO # 2397.05 (MS/MSD)
DATE SUBMITTED: 04-18-90
SAMPLE ID: MW104 (MS/MSD)

REPORT: G2704.7

DATE: 05-08-90

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

POUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS PERCENT RECOVERY	QC LIMITS RECOVERY
1-1-DICHLOROETHENE	50	0	58	116	61 - 145
CHLOROETHENE	50	0	54	108	71 - 120
TENE ZENE	50	0	60	120	76 - 127
TOLUENE	50	0	57	114	76 - 125
OROBENZENE	50	٥	54	108	75 - 130

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD PERCENT RECOVERY	PERCENT RPD	QC RPD	LIMITS REC.
	:					•
	50	56	102	4	14	61 - 145
TRICHLOROETHENE	50	54	108	0	14	71 - 120
- ENZENE	50	57	114	5	11	76 - 127
UENE	50	56	112	2	13	76 - 125
CALOROBENZENE	50	54	108	0	13	75 - 130

LUES OUTSIDE OF AC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklanoma 74012 . 918-251-2858

& MOORE.

BORMAN DRIVE, SUITE 340

LOUIS, MO 63146

DAVID PURINGTON

REPORT: G2704.8

DATE: 05-08-90

MELE MATRIX: WATER

METHOD BLANK

D REF.: SW846-8270, EPA METHODOLOGY

CT: 19943 - 002; FORD EARTH CITY

TLE ID: METHOD BLANK

DATE EXTRACTED: 04-19-90

DATE ANALYZED : 04-23-90

			•		•
- VOLATILES	DET. LIMIT	RESULTS (ug/L)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/L)
E	10	ND	ACENAPHTHENE	10	ND .
S -CHLOROETHYL) ETHER	10	ND	2,4-DINITROPHENOL	50	ND
ILOROPHENOL	10	ND	4-NITROPHENOL	50	ND
ICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
4 ICHLOROBENZENE	10	מא	2,4-DINITROTOLUENE	10	ND
TYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	ND
■ ICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
MATHYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	ND
.SI2-CHLORDISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
LTHYLPHENOL	10	ND	4-NITROANILINE	50	ND
ROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
XACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
OBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND -
,HORONE	10	ND	HEXACHLOROBENZENE	10	ND
NEROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
-4-DIMETHYLPHENOL	10	ND	PHENANTHRENE	10	ND
DIC ACID	50	ND	ANTHRACENE	10	ND
":3"2-CHLOROETHOXY) METHANE	10	ND	DI-N-BUTYLPHTHALATE	10	ND
.4-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
THALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
OMLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
CHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
LORO-3-METHYLPHENOL	10	. ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	12
-METHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
<u>EX</u> ACHLOROCYCLOPENTADIENE	10 -	ND	DI-N-OCTYL PHTHALATE	10	ND
±6-TRICHLOROPHENOL	10.	ND	BENZO(B)FLUORANTHENE	10	ND
5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
-CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND
ITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
THYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
CEMAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
MITROANILINE	50	ND			
					•

QA/QC SURROGATE RECOVERIES

___OBENZENE-d5(35-114) 78% 2-FLUOROBIPHENYL(43-116) 69% TERPHENYL-d14 (33-141) 94% TENOL-d5 (10-94) 88% 2-FLUOROPHENOL (21-100) 69% 2,4,6-TRIBROMOPHENOL(10-123) 81%

NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

S & MOORE

1 BORMAN DRIVE, SUITE 340

LOUIS, MO 63146

N: DAVID PURINGTON

REPORT: G2704.9

DATE: 05-08-90

LE MATRIX: WATER

O # METHOD BLANK

EMOD REF .: SW846-8270, EPA METHODOLOGY

RECT: 19943 - 002; FORD EARTH CITY

PLE ID: METHOD BLANK

DATE EXTRACTED: 04-24-90
DATE ANALYZED: 04-25-90

TVOLATILES	DET.	RESULTS (ug/L)	<u>SEMIVOLATILES</u>	DET.	RESULTS (ug/L)
HEVOL	10	ND	ACENAPHTHENE	10	ND
2-CHLORDETHYL)ETHER	10	ND	2,4-DINITROPHENOL	50	ND
HLOROPHENOL	10	ND ·	4-NITROPHENOL	50	ND
DICHLOROBENZENE	10	ND	DIBENZOFURAN	10	ND
-DICHLOROBENZENE	10	ND	2,4-DINITROTOLUENE	10	ND
NZYL ALCOHOL	10	ND	2,6-DINITROTOLUENE	10	NĎ
DICHLOROBENZENE	10	ND	DIETHYLPHTHALATE	10	ND
:- ETHYLPHENOL	10	ND	4-CHLOROPHENYL-PHENYLETHER	10	- ND
45(2-CHLORDISOPROPYL)ETHER	10	ND	FLUORENE	10	ND
. METHYLPHENOL	10	ND	4-NITROANILINE	50	ND
THE ITROSO-DI-n-PROPYLAMINE	10	ND	4,6-DINITRO 2-METHYLPHENOL	50	ND
HE ACHLOROETHANE	10	ND	N-NITROSODIPHENYLAMINE(1)	10	ND
TROBENZENE	10	ND	4-BROMOPHENYL-PHENYLETHER	10	ND
PHORONE	10	ND	HEXACHLOROBENZENE	10	ND.
: ITROPHENOL	10	ND	PENTACHLOROPHENOL	10	ND
	10	ND	PHENANTHRENE	10	ND
_NZOIC ACID	50	ND	ANTHRACENE	10	ND.
3 (2-CHLOROETHOXY) METHANE	-10	ND	DI-N-BUTYLPHTHALATE	10	ND
24-DICHLOROPHENOL	10	ND	FLUORANTHENE	10	ND
2,4-TRICHLOROBENZENE	10	ND	PYRENE	10	ND
HTHALENE	10	ND	BUTYLBENZYLPHTHALATE	10	ND
4 CHLOROANILINE	10	ND	3,3-DICHLOROBENZIDINE	20	ND
KACHLOROBUTADIENE	10	ND	BENZO(A)ANTHRACENE	10	ND
HLORO-3-METHYLPHENOL	10	ND	BIS(2-ETHYLHEXYL)PHTHALATE	10	ND
2 METHYLNAPHTHALENE	10	ND	CHRYSENE	10	ND
ACHLOROCYCLOPENTADIENE	10	MD	DI-N-OCTYL PHTHALATE	10	ND
4,6-TRICHLOROPHENOL	10	ND	BENZO(B)FLUORANTHENE	10	ND
4,5-TRICHLOROPHENOL	50	ND	BENZO(K)FLUORANTHENE	10	ND
2 CHLORONAPHTHALENE	10	ND	BENZO(A)PYRENE	10	ND -
NITROANILINE	50	ND	INDENO(1,2,3-CD)PYRENE	10	ND
METHYLPHTHALATE	10	ND	DIBENZ(A,H)ANTHRACENE	10	ND
ENAPHTHYLENE	10	ND	BENZO(G,H,I)PERYLENE	10	ND
MITROANILINE	50	ND	·		•

QA/QC SURROGATE RECOVERIES

TROBENZENE-	d5(35-114)	60%	2-FLUOROBIPHENY	L(43-116)	58%	TERPHENYL-d14	(33-141)	80%
BENOL-d5						2,4,6-TRIBROMOPHENO	L(10-123)	65%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SUUTHWEST LABORATURE OF UNLAHOMA, INC.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CENT: DAMES & MOORE

REPORT: G2704.10

11701 BORMAN DRIVE, SUITE 340

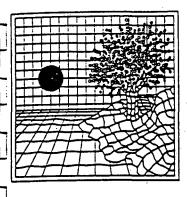
DATE: 05-08-90

ST. LOUIS, MO 63146 ATTN: DAVID PURINGTON

SAMPLE MATRIX: WATER
SWLO # 2397.02 (MS/MSD)
DATE SUBMITTED: 04-18-90
DATE EXTRACTED: 04-19-90
DATE ANALYZED: 04-24-90

METHOD REFERENCE: SW846-8270, EPA METHODOLOGY

PROJECT: 19943 - 002; FORD EARTH CITY


SAMPLE ID: MW102 (MS/MSD)

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

	MPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS PERCENT RECOVERY	QC LIMITS RECOVERY
-1	·		_	٠		.
1	ENOL	200	0	115	58	26 - 90
2	CHLOROPHENOL	200	0	120	60	25 - 102
	4-DICHLOROBENZENE	100	0 .	67	67	28 - 104
•	NITROSC-di-n-PROPYLAMINE	100	0	56	56	41 - 126
	2,4-TRICHLOROBENZENE	100	0	68	68	38 - 107
	PHLORO-3-METHYLPHENOL	200	0	122	61	26 - 103
1	ENAPHTHENE	100	0	78	78	31 - 137
Į	NITROPHENOL	200	0	179	90*	11 - 114
٠, ٢	-A-DINITROTOLUENE	100	0	90	90	28 - 89
	NTACHLOROPHENOL	200	0	104	52	17 - 109
:	RENE	-100	0	78	78	35 - 142

- 1	SPIKE ADDED	MSD CONCENTRATION	MSD PERCENT	PERCENT		LIMITS
HPOUND	(ug/Kg)	(ug/Kg)	RECOVERY	RPD	RPD	RECOVERY
ENOL	200	123	62	7	35	26 - 90
CHLOROPHENOL	200	116	58	3	50	25 - 102
4-DICHLOROBENZENE	100	76	76	12	27	28 - 104
VITROSO-di-n-PROPYLAMIN	E 100	50	50	11	28	41 - 126
1,4-TRICHLOROBENZENE	100	70	70	3	23	38 - 107
CHLORO-3-METHYLPHENOL	200	119	60	2	33	26 - 103
ENAPHTHENE	100	77	<i>7</i> 7	1	19	31 - 137
NITROPHENOL	200	188	94*	4	50	11 - 114
4-DINITROTOLUENE	100	86	86	4	47	28 - 89
-NTACHLOROPHENOL	200	117	58	11	47	17 - 109
RENE	100	79	79	1	36	35 - 142

ALUES OUTSIDE OF QC LIMITS

May 3, 1990

Dave Furington
DAMES & MOORE
11701 Borman Drive
St. Louis. MO 63146

Project: Earth City

Dear Mr. Furington:

Enclosed are the analytical results for your samples received in our laboratory on April 13, 1990, for the above-captioned project.

If, in your review, you should have any questions or require additional information, please call.

Sincerely,

Randy Staggs Project Manager

RS/1k

Enclosures

DAMES & MOORE

MAY 04 1990

ST. LOUIS, MISSOURI

314-993-4599

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sample	o Sourco	& Client	Fo	RD US	Pool	£57			~(d Personnel (SI	gnature) :- '
Projec	I Title	ENR	City		•		Job No. / 954	3-002				·
Dato	.Tlma	Samp 1.D. N	olo .	Sample	No. Contai		Sampling S	Sito		Hemark	. .	•
4/12		BKG		So, 1	3				7	PH, Semi V, Ped,	Hab, N	61. CA
		54		sedimil	3_			· · · · · · · · · · · · · · · · · · ·	-			
		_53		sedini	3				-			·
		Comp		Soi 1	3	· · · · · · · · · · · · · · · · · · ·			_			
		Comp	1	50:1	3				_		·	· ·
							<u> </u>		_			*.•
			Δ					· · · · · · · · · · · · · · · · · · ·	-		 	· · ·
-4-1							\\		-		·	
4-1		-/ :					- 		-		``` ;	
-{		/			-	· · · · · · · · · · · · · · · · · · ·	\ <u></u>		-	/		•
	/		——/		/		 			/		: -
7				$\overline{}$	<u> </u>				#			
[\		<u></u>		•		· · · · · · · · · · · · · · · · · · ·		
							-		╢			, .
	italied by	1 Date 4/12	Time 5.00	Received (MSiknotur MUSIG) Allerma	0) 4/13/	Time 0830	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
ellaqu	I shed by	Date	Time	Received	DALL DATE	Time	Relinquished byt	Date	Time	Received by:	Date	Time
(Sign	ature)			. (Signatur	e)		(Signiture)			(Signature)		1
	*		 									
	italied by	Date	Time	Received (Signatur	,	Time	Relinquiphed by: (Signature)	Date	lna	Received by: (Signature)	Date	Time
			1				`		1	, ,		

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT:

DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

REPORT: 2371.01MT

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWLD # 2371.01

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: BKG

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D
TOTAL METALS					
ARSENIC LEAD MERCURY SELENIUM THALLIUM ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER	2.0 0.6 0.1 0.4 0.4 6.0 1.0 1.0	mg/kg mg/kg mg/kg mg/kkg mg/kkg mg/kkg mg/kg	5.80 17.4 ND ND ND 6.9 ND 1.1 14.5 24.0	04-25-90 04-19-90 04-18-90 04-24-90 04-19-90 04-19-90 04-19-90 04-19-90 04-19-90	SW 7060 SW 7421 SW 7471 SW 7740 SW 7841 SW 6010 SW 6010 SW 6010 SW 6010
NICKEL SILVER ZINC	2.0 2.0 2.0	mg/kg mg/kg mg/kg	18.0 ND 61.6	04-19-90 04-19-90 04-19-90	SW 6010 SW 6010 SW 6010

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846,

THIRD EDITION, NOVEMBER 1986

= STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.01

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: BKG

-	ARAMETER	DET. LIMIT	UNIT_	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
Í	TOTAL EXTRACTABLE HY		.c				
_	OTAL EXTRACTABLE AT	JUGAUPOI	<u> </u>	-	·		
	GASOLINE	1.0 .	mg/Kg	ND	04-19-90	04-20-90	GC/FID
7	DIESEL	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
	KEROSENE	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
	JP-4	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
ş	NAPTHA	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
🛏	BUNKER C/#6 FUEL DIL	1,.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
	JISCELLANEOUS (1)	1.0	mg/Kg	14.7	04-19-90	04-20-90	GC/FID

GA/GC SURROGATE RECOVERY

NAPHTHALENE

102%

REPORT:

05-03-90

DATE:

) = ANALYSIS SHOWS MISCELLANEOUS PEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

D = NOT DETECTED ABOVE QUANTITATION LIMIT

= COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE, INC.

REPORT: 2371.01H

11701 BORMAN DRIVE

DATE: 05-03-90

ST. LOUIS, MO 63149 ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.01

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: BKG

RESULTS REPORTED IN ug/Kg OR Parts Fer Billion

ERBICIDES	LIMIT .	UNIT	RESULTS
,4-D	80.0	ug/Kg	ND
,4,5-TP (SILVEX)	10.0	ug/Kg	ND

·GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

94.2%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858
DDRE, INC: REPORT: 2371.01F

DAMES & MOORE, INC. 11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID FURINGTON

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWL0 # 2371.01

LIENT:

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY

SAMPLE ID: BKG

RESULTS REPORTED IN ug/Kg OR Parts Fer Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	17.2	ND
BETA-BHC	17.2	ИD
GAMMA-BHC(LINDANE)	17.2	ND
DELTA-BHC	17.2	ND
HEPTACHLOR	17.2	ND
ALDRIN	17.2	ND
HEPTACHLOR EFOXIDE	17.2	ND
ENDOSULFAN I	17.2	ND
4,4-DDE	17.2	ND
DIELDRIN	34.5	ND
ENDRIN	34.5	ND
ENDOSULFAN II	34.5	ND
4,4-DDD	34.5 34.5	ND
ENDOSULFAN SULFATE		ND
4,4-DDT	34.5	ND
ENDRIN KETONE	34.5	ND
METHOXYCHLOR	172.4	ND .
ALPHA-CHLORDANE	172.4	ND
GAMMA-CHLORDANE	172.4	ND
TOXAPHENE	344.8	ND
AROCHLOR-1221	172.4	ND
AROCHLOR-1232	172.4	ND
AROCHLOR-1242	172.4	ND
AROCHLOR-1016	172.4	ND
AROCHLOR-1248	172.4	ND
AROCHLOR-1254	344.8	ND
AROCHLOR-1260	344.8	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150)

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

S & MOORE. INC. 01 BORMAN DRIVE LOUIS, MO 63149 u: DAVID PURINGTON REPORT: 2371.01B

DATE: 05-03-90

PLE MATRIX: SOIL

b # 2371.01

HOD REF .: SW846-8270, EPA METHODOLOGY

JECT: EARTH CITY

PLE ID: BKG

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED : 04-26-90

IVOLATILES	DET.	RESULTS (ug/Kg)	<u>SEMIVOLATILES</u>	DET. LIMIT	RESULTS (ug/Kg)
THOL	660	ND	ACENAPHTHENE -	660	ND
(2-CHLOROETHYL)ETHER	660	ND	2,4-DINITROPHENOL	3200	ND
HLOROPHENOL	660	ND	4-NITROPHENOL	3200	ND
DICHLOROBENZENE	660	ND	DIBENZOFURAN	660	ИĎ
-DICHLOROBENZENE	660	ND	2.4-DINITROTOLUENE	660	ND
ZYL ALCOHOL	660	ND	2,6-DINITROTOLUENE	660	ND
	660	ND	DIETHYLPHTHALATE	660	: ND
1ETHYLPHENOL	660	ND	4-CHLOROPHENYL-PHENYLETHER	660	ND
(2-CHLORGISOPROPYL)ETHER	660	ND	FLUORENE.	660	ND
ETHYLPHENOL	660	ND	4-NITROANILINE	3200	ND
NITROSO-DI-n-PROPYLAMINE	660	ND	4,6-DINITRO 2-METHYLPHENOL	3200	ND
KACHLOROETHANE	660	, ND	N-NITROSODIPHENYLAMINE(1)	660	ND
ROBENZENE	660	ND	4-BROMOPHENYL-PHENYLETHER	660	ND
PHORONE	660	ND	HEXACHLOROBENZENE	660	ND
NITROPHENOL	660	ND	PENTACHLOROPHENOL	660	ND
	660	ND	PHENANTHRENE	660	ND
ZOIC ACID	3200	ND	ANTHRACENE	660	ND
5(2-CHLORDETHOXY) METHANE	660	ND	DI-N-BUTYLPHTHALATE	660	ND
4-DICHLOROPHENOL	660	ND	FLUORANTHENE	660	ND
4-TRICHLOROBENZENE	660	ND	PYRENE	660	ND
HTHALENE	660	ND	BUTYLBENZYLPHTHALATE	660	ND
CHLOROANILINE	660	ND	3.3-DICHLOROBENZIDINE	1320	ND
ACHLOROBUTADIENE	660	ND	BENZO(A)ANTHRACENE	660	ND
HLORO-3-METHYLPHENOL	660	ND	BIS(2-ETHYLHEXYL)PHTHALATE	660	. ND
METHYLNAPHTHALENE	660	ND	CHRYSENE	660	ND
*XACHLOROCYCLOPENTADIENE	660	ND	DI-N-OCTYL PHTHALATE	660	ND
4,6-TRICHLOROPHENOL	660	ND	BENZO(B)FLUORANTHENE	660	ND
4,5-TRICHLOROPHENOL	3200	ND	BENZO(K)FLUORANTHENE	660	ND
CHLORONAPHTHALENE	660	ND	BENZO(A)PYRENE	660	ND .
NITROANILINE	3200	ND	INDENO(1,2,3-CD)PYRENE	660	ND
1ETHYLPHTHALATE	660	ND	DIBENZ(A,H)ANTHRACENE	660	. ND
ENAPHTHYLENE	660	ND	BENZO(G,H,I)PERYLENE	660	ND
VITROANILINE	3200	ND	. ,		

BA/BC SURROGATE RECOVERIES

TRODENZENE-d5(23-120) 73% 2-FLUOROBIPHENYL(30-115) 79% TERPHENYL-d14 (18-137) 83% (24-113) 85% 2-FLUOROFHENOL (25-121) 69% 2,4,6-TRIBROMOPHENOL(19-122)

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT:

DATE:

05-03-90

CLIENT:

DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.02

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: S4

PARAMETER		DET.	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE

TOTAL CYANIDES	٠.	1.0	ug/Kg	ND	04-27-90	SM 412D
TOTAL METALS						
ARSENIC		2.0	mg/kg	5.60	04-25-90	SW 7060
LEAD		0.6	mg/kg	17.8	04-19-90	SW 7421
MERCURY	• .	0.1	mg/kg	0.18	04-18-90	SW 7471
SELENIUM		0.4	mg/kg	· ND	04-24-90	SW 7740 '
THALLIUM		0.4	mg/kg	ND	04-19-90	SW 7841
ANTIMONY		6.0	mg/kg	6.7	04-19-90	SW 6010
BERYLLIUM		1.0	mg/kg	ND	04-19-90	SW 6010
CADMIUM		1.0	mg/kg	ND	04-19-90	SW 6010
CHROMIUM		1.0	mg/kg	13.1	04-19-90	SW 6010
COPPER		2.0	mg/kg	23.0	04-19-90	SW 6010
NICKEL		2.0	mg/kg	16.3	04-19-90	SW 6010
SILVER		2.0	mg/kg	ND	04-19-90	SW 6010
ZINC		2.0	mg/kg	56.8	04-19-90	SW 6010

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846, THIRD EDITION, NOVEMBER 1986

⁼ STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: 2371.02T

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWL0 # 2371.02

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: S4

ARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
OTAL EXTRACTABLE HY	DROCARBON	<u>1S</u>			·	
SASOLINE	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
=>IESEL	1.0	mg/Kg	ND -	04-19-90	04-20-90	GC/FID
	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
P-4	1.0	mg/Kg	ND .	04-19-90	04-20-90	GC/FID
NAFTHA	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
FUNKER C/#6 FUEL OIL	1.0	mg/Kg	ND	04-19-90	04-20-90	GC/FID
NISCELLANEOUS (1)	110	mg/Kg	6.3	04-19-90	04-20-90	GC/FID

QA/QC SURROGATE RECOVERY

NAPHTHALENE

100%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

^{(1) =} ANALYSIS SHOWS MISCELLANEOUS PEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

CLIENT: DAMES & MODRE, INC.

REPORT:

2371.02H

11701 BORMAN DRIVE

DATE:

05-03-90

ST. LOUIS, MO 63149 ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.02

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: S4

RESULTS REPORTED IN ug/Kg OR Parts Per Billion

ERBICIDES	DET. LIMIT	UNIT	RESULTS
2,4-D	80.0	ug/Kg	ND
2,4,5-TP (SILVEX)	10.0	ug/Kg	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

92.3%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

IENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: 2371.02P

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWL0 # 2371.02

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EFA METHODOLOGY

PROJECT: EARTH CITY

SAMPLE ID: S4

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC BETA-BHC	23.6	ND
BETA-BHC	23.6	ND
GAMMA-BHC(LINDANE)	23.6	ND
BETA-BHC GAMMA-BHC(LINDANE) DELTA-BHC	23.6	ND
HERIOLHI IIR	23 8	ND
ALDRIN	23.6	ND
ALDRIN HEPTACHLOR EFOXIDE ENDOSULFAN I 4,4-DDE DIELDRIN ENDRIN ENDOSULFAN II 4,4-DDD ENDOSULFAN SULFATE	23.6	ND
ENDOSULFAN I	23.6	ND
4,4-DDE	23:6	ND
DIELDRIN ENDRIN ENDOSULFAN II 4,4-DDD ENDOSULFAN SULFATE 4,4-DDT ENDRIN KETONE METHOXYCHLOR ALPHA-CHLORDANE GAMMA-CHLORDANE	47.2	ND
ENDRIN	47.2	ND
ENDOSULFAN II	47.2 47.2 47.2	ND
4,4-DDD	47.2	ND
ENDOSULFAN SULFATE	47.2	ND
4,4-DDT	47.2	ND
ENDRIN KETONE	47.2	ND
METHOXYCHLOR	236.0	ND
ALPHA-CHLORDANE	236.0	ND
		ND
TOXAPHENE	472.0	ND
AROCHLOR-1221	236.0	, ND
AROCHLOR-1232	236.0	ND
AROCHLOR-1242	236.0	ND
AROCHLOR-1016	236.0	ND
AROCHLOR-1248	236.0	ND
AROCHLOR-1254	472.0	ND
AROCHLOR-1260	472.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 88%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

3 & MOORE, INC.

1 BORMAN DRIVE

LOUIS, MO 63149

: DAVID FURINGTON

APLE MATRIX: SOIL

p # 2371.02

HOD REF.: SW846-8270, EPA METHODOLOGY

DJECT: EARTH CITY

TPLE ID: 54

REPORT: 2371.02B

DATE: 05-03-90

DATE SUBMITTED: 04-13-90

DATE EXTRACTED: 04-17-90

DATE ANALYZED : 04-26-90

MIVOLATILES	DET. LIMIT	RESULTS (ug/Kg)	<u>SEMIVOLATILES</u>	DET. LIMIT	RESULT	
NOL	660	ND	ACENAPHTHENE	660	ND	
S(2-CHLOROETHYL)ETHER	660	ND	2,4-DINITROFHENOL	3200	ND	
HLOROFHENOL	660	ND	4-NITROPHENOL	3200	ND	
-DICHLOROBENZENE	660	ND	DIBENZOFURAN	660	ND	
4-DICHLOROBENZENE	660	ND	2,4-DINITROTOLUENE	660	ND	
- HIZYL ALCOHOL	660	ND	2,6-DINITROTOLUENE	660 .	ND	
-DICHLOROBENZENE	660	ND	DIETHYLPHTHALATE	660	65	J
ETHYLPHENOL	660	ND	4-CHLOROPHENYL-PHENYLETHER	660	ND	
15(2-CHLOROISOPROFYL)ETHER	660	ND	FLUORENE	660	ND	
ETHYLPHENOL -	660	ND	4-NITROANILINE	3200	ND	
- IITROSO-DI-n-FROFYLAMINE	660	ND	4,6-DINITRO 2-METHYLPHENOL	3200	ND	
EXACHLOROETHANE	660	ND	N-NITROSODIFHENYLAMINE(1)	660	ND	
" TROBENZENE	660	ND	4-BROMOPHENYL-PHENYLETHER	660	ND	
PHORONE	660	. ND	HEXACHLOROBENZENE	660	ND	
MITROPHENOL	660	MD	PENTACHLOROPHENCL	660	ND	
4-DIMETHYLPHENOL	660	ND	PHENANTHRENE	660	40:	J
ZOIC ACID	3200	140. J	ANTHRACENE	660	ND	
5(2-CHLOROETHOXY) METHANE	660	ND	DI-N-BUTYLPHTHALATE	660	100	J
,4-DICHLOROFHENOL	660	ND	FLUORANTHENE	660	ND	
4-TRICHLOROBENZENE	660	ND	PYRENE	660	30	J
PHTHALENE	660	ND	BUTYLBENZYLFHTHALATE	660	50.	J
-CHLOROANILINE	660	ND	3,3-DICHLOROBENZIDINE	1320	-ND	
- <u>S</u> YACHLOROBUTADIENE	660	ND	BENZO(A)ANTHRACENE	660	ND	
CHLORO-3-METHYLPHENOL	660	ND	BIS(2-ETHYLHEXYL)PHTHALATE	660	190	J
METHYLNAPHTHALENE	660	ND	CHRYSENE	660	ND	
<u>EXACHLOROCYCLOFENTADIENE</u>	660	ND	DI-N-OCTYL PHTHALATE	660	ND	
4,6-TRICHLOROPHENOL	660	ND	BENZO(B)FLUORANTHENE	660	ND	
4,5-TRICHLOROPHENOL	3200	ND	BENZO(K)FLUORANTHENE	660	ND	
TECHLORONAPHTHALENE	660	ND	BENZO(A)PYRENE	660	ND	
NITROANILINE	3200	ND	INDENO(1,2,3-CD)PYRENE	660	ND	
METHYLPHTHALATE	660	ND	DIBENZ(A,H)ANTHRACENE	660	ND	
ENAPHTHYLENE	660	ND	BENZO(G,H,I)PERYLENE	660	ND	
NITROANILINE	3200	ND				
•			·			

QA/QC SURROGATE RECOVERIES

TROBENZENE-d5(23-120) 83% 2-FLUOROBIPHENYL(30-115) 88% TERPHENYL-d14 (18-137) 86% HENOL-d5 (24-113) 96% 2-FLUOROPHENOL (25-121) 80% 2,4,6-TRIBROMOPHENOL(19-122) 103%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT:

DATE:

2371.03MT

05-03-90

CLIENT:

DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.03

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: S3

DARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
PARAMETER	CIMAI	OIATI	RESULIS	HINHETTEN	REPENLIVE
TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D
TOTAL METALS					
ARSENIC	2.0	mg/kg	2.12	04-25-90	SW 7060
7 LEAD	0.6	mg/kg	12.4	04-19-90	SW 7421
MERCURY	0.1	mg/kg ·	ND	04-18-90	SW 7471
SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740
_ THALLIUM	0.4	mg/kg	ND	04-19-90	SW 7841
ANTIMONY	6.0	mg/kg	ND	04-19-90	SW 6010
BERYLLIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CADMIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CHROMIUM	1.0	mg/kg	5.5	04-19-90	SW 6010
L COPPER	2.0	mg/kg	15.2	04-19-90	SW 6010
NICKEL	2.0	mg/kg	9.7	04-19-90	SW. 6010
SILVER	2.0	mg/kg =	ND	04-19-90	SW 6010
ZINC	2.0	mg/kg	32.8	04-19-90	SW 6010

ND

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

THIRD EDITION, NOVEMBER 1986

SM = STANDARD METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846,
THIRD EDITION, NOVEMBER 1986

⁼ STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MD 63149

ATTN: DAVID PURINGTON

REPORT: 2371.03T

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWL0 # 2371.03

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY

SAMPLE ID: SJ

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
TOTAL EXTRACTAB	<u>LE HYDROCARBO</u>	<u>INS</u>				
GASOLINE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
DIESEL	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
KEROSENE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
JP-4	1.0	mg/Kg	ND .	04-19-90	04-21-90	GC/FID
NAPTHA	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
BUNKER C/#6 FUE	L DIL 1.0	mg/Kg	ND.	04-19-90	04-21-90	GC/FID
MISCELLANEOUS (1). 1.0	mg/Kg	12.0	04-19-90	04-21-90	GC/FID

QA/QC SURROGATE RECOVERY

NAPHTHALENE

100%

(1) = ANALYSIS SHOWS MISCELLANEOUS FEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

DAMES & MOORE, INC. CLIENT:

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: 2371.03H

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWLD # 2371.03

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: 53

RESULTS REPORTED IN ug/Kg OR Farts Per Billion

ERBICIDES	LIMIT_	UNIT	RESULTS
,4-D	80.0	ug/Kg	ND
,4,5-TF (SILVEX)	10.0	ug/Kg	ND

QA/QC SURROGATE RECOVERY

2,4,5-T (10-98)

- 91.9%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ENT: DAMES & MODRE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: 2371.03P

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWLO # 2371.03

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY

SAMPLE ID: S3

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	19.0	ND
BETA-BHC	19.0	ND
GAMMA-BHC(LINDANE)	19.0	ND
DELTA-BHC	19.0	ND
HEFTACHLOR	19.0	ИD
ALDRIN	19.0	. HD
HEFTACHLOR EFOXIDE	19.0	ND
ENDOSULFAN I	19.0	ND
4,4-DDE	19.0	MD
DIELDRIN	38.0	ND
ENDRIN	38.0	ND
ENDOSULFAN II	33.0	ND
4,4-DDD	38.0	ND
ENDOSULFAN SULFATE	38.0	ND
4,4-DDT	38.0	ND
ENDRIN KETONE	38.0	MD
METHOXYCHLOR	190.2	ND
ALPHA-CHLORDANE	190.2	ND
GAMMA-CHLORDANE	190.2	ND
TOXAPHENE	380.5	ND
AROCHLOR-1221	190.2	ND
AROCHLOR-1232	190.2	ND
AROCHLOR-1242	190.2	ND
AROCHLOR-1016	190.2	ND
AROCHLOR-1248	190.2	ND
AROCHLOR-1254	× 380.5	ND
AROCHLOR-1260	380.5	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 81%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

3 = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN SLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ES % MOORE, INC. 01 BORMAN DRIVE LOUIS, MO 63149 N: DAVID PURINGTON

REPORT: 2371.038

DATE: 05-03-90

MPLE MATRIX: SOIL

0 # 2371.03

HOD REF.: SW846-8270, EPA METHODOLOGY

DJECT: EARTH CITY

MPLE ID: S3

DATE SUBMITTED: 04-13-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 04-26-90

Ī	MIVOLATILES	DET. LIMIT	RESULT (ug/Kg		SEMIVOLATILES	DET.	RESUL'	
	NOL	660	ND		ACENAPHTHENE	660	ND	
Ē	S(2-CHLOROETHYL)ETHER	660	ND		2,4-DINITROPHENOL	3200	ND	
	CHLOROPHENOL	660	ND		4-NITROPHENOL	3200	ND	
_	5-DICHLOROBENZENE	660	ND		DIBENZOFURAN	660	ND	
_	4-DICHLOROBENZENE	660	ND		2,4-DINITROTOLUENE	660	ND	
	NZYL ALCOHOL	660	ND		2,6-DINITROTOLUENE	660	ND	
	C-DICHLOROBENZENE	660	, ND		DIETHYLPHTHALATE	660	ND	
-	HETHYLPHENOL	660	ND		4-CHLOROPHENYL-PHENYLETHER	660	ND	
	S(2-CHLOROISOPROPYL)ETHER	660 "	MD		FLUORENE	660	ND	
	METHYLPHENOL	660	ND		4-NITROANILINE	3200	ND	
	NITROSO-DI-n-PROPYLAMINE	660	MD		4,6-DINITRO 2-METHYLPHENOL	3200	ND	٠
ā	XACHLOROETHANE	660	ND		N-NITROSODIPHENYLAMINE(1)	660	ND	~
~	TROBENZENE	660	ND		4-BROMOPHENYL-PHENYLETHER	660	ND	
	DPHORONE	660	ND		HEXACHLOROBENZENE	660	ND	
	NITROPHENOL	660	ND		PENTACHLOROFHENOL	660	ND	
	4-DIMETHYLPHENOL	660	ND		PHENANTHRENE	660	30	J
	NZOIC ACID	3200	35	J	ANTHRACENE	660	MD	
	6(2-CHLOROETHOXY)METHANE	660	ND		DI-N-BUTYLPHTHALATE	660	10	J
	4-DICHLOROPHENOL	660	ND		FLUORANTHENE	660	40 -	J
-6	2,4-TRICHLOROBENZENE	660	ND		PYRENE	660	50	J
	HTHALENE	660	ND		BUTYLBENZYLPHTHALATE	660	ND	
	CHLOROANILINE	660	ND		3,3-DICHLOROBENZIDINE	1320	ND	
	XACHLOROBUTADIENE	660	ND		BENZO(A)ANTHRACENE	660	ND	
	CHLORO-3-METHYLPHENOL	660	ND		BIS(2-ETHYLHEXYL)PHTHALATE	660	ND	
	METHYLNAPHTHALENE	660	ND		CHRYSENE	660	ND	
	XACHLOROCYCLOPENTADIENE	660	ND		DI-N-OCTYL PHTHALATE	660	ND	
-	P,6-TRICHLOROPHENOL	660	ND ·		BENZO(B)FLUORANTHENE	660	ND	
	4,5-TRICHLOROPHENOL	3200	ND		BENZO(K)FLUORANTHENE	660	ND	
	CHLORONAPHTHALENE	660	ND		BENZO(A)PYRENE	660	ND	
-6	NITROANILINE	3200	ND		INDENO(1,2,3-CD)PYRENE	660	ND	
	METHYLPHTHALATE	660	ND		DIBENZ(A,H)ANTHRACENE	660	ND	
2	ENAPHTHYLENE	660	ND		BENZO(G,H,I)PERYLENE	660	ND	
	NITROANILINE	3200	ND					

QA/QC SURROGATE RECOVERIES

TROBENZENE-	d5(23-120)	70%	2-FLUOROBIPHENYL	(30-115)	71%	TERPHENYL-d14	(18-137)	90%
MENOL-d5	(24-113)	83%	2-FLUOROPHENOL	(25-121)	67%	2,4,6-TRIBROMOFHENO	L(19-122)	79%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE = SURROGATE RECOVERY DUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

REPORT:

DATE: 05-03-90

2371.04MT

CLIENT: DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.04

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 2

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
TOTAL CYANIDES	1.0	ug/Kġ	ND	04-27-90	SM 412D
TOTAL METALS					
ARSENIC	2.0	mg/kg	7.41	04-25-90	SW 7060
LEAD	0.6	mg/kg	15.9	04-19-90	SW 7421
MERCURY	0.1	mg/kg	ND	04-18-90	SW 7471
SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740
THALLIUM	0.4	mg/kg	: ND	04-19-90	SW 7941
ANTIMONY	6.0	mg/kg.	7.4	04-19-90	SW 6010
BERYLLIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CADMIUM	1.0	mg/kg	ND	04-19-90	SW 6010
CHROMIUM	1.0	mg/kg	15.5	04-19-90	SW 6010
COPPER	2.0	mg/kg	25.0	04-19-90	SW 6010
NICKEL	2.0	mg/kg	19.2	04-19-90	SW 6010
SILVER	2.0	mg/kg	ND	04-19-90	SW 6010
ZINC	2.0	mg/kg	57.4	04-19-90	SW 6010

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

SW = TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846, THIRD EDITION, NOVEMBER 1986

SM = STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT: DAMES & MODRE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.04

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 2

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
TOTAL EXTRACTABLE HY	DROCARBO	<u>NS</u>	•,			
GASOLINE	1.0	mg/Kg	ND -	04-19-90	04-21-90	GC/FID
DIESEL	1.0	mg/Kg	ND .	04-19-90	04-21-90	GC/FID
KEROSENE	1.0	mg/Kg	ND .	04-19-90	04-21-90	GC/FID
JF-4	140	mg/Kg	ND	04-19-90	04-21-90	GC/FID
_NAPTHA	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
BUNKER C/#6 FUEL DIL	1.0	mg/Kg	ND	04-19-70	04-21-90	GC/FID
-11SCELLANEOUS (1)	1.0	mg/Kg	5.1	04-19-90	04-21-90	GC/FID

GA/GC SURROGATE RECOVERY

NAPHTHALENE

95%

DATE:

05-03-90

(1) = ANALYSIS SHOWS MISCELLANEOUS PEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

= NOT DETECTED ABOVE QUANTITATION LIMIT

= COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT:

DATE: 05-03-90

SAMPLE MATRIX:

SWLD # 2371.04

DATE SUBMITTED: DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: COMP. 2

RESULTS REPORTED IN ug/Kg OR Parts Per Billion

ERBICIDES	DET. LIMIT	UNIT	RESULTS
2,4-D	80.0	ug/Kg	DN
,4,5-TP (SILVEX)	10.0	ug/Kg	DN

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

78.2%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

LIENT: DAMES & MOORE, INC.

11701 BORMAN DRIVE ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: 2371.04P

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWL0 # 2371.04

DATE SUBMITTED: 04-13-90
DATE EXTRACTED: 04-17-90
DATE ANALYZED: 05-02-90

METHOD REFERENCE: SW846-8080, EFA METHODOLOGY

PROJECT: EARTH CITY SAMPLE ID: COMP. 2

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	21.7 21.7	ND
BETA-BHC	21.7	ND
GAMMA-BHC(LINDANE)	21.7	ND
DELTA-BHC	21.7	ND
HEPTACHLOR	21.7	ND
ALPHA-BHC BETA-BHC GAMMA-BHC(LINDANE) DELTA-BHC HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE ENDOSULFAN I	21.7	ND
HEPTACHLOR EPOXIDE	21.7	ND
ENDOSULFAN I	21.7	ND
4,4-DDE	21.7	ND
DIELDRIN	43.4	ND
ENDRIN	43.4	ND
HEPTACHLOR EPOXIDE ENDOSULFAN I 4,4-DDE DIELDRIN ENDOSULFAN II 4,4-DDD ENDOSULFAN SULFATE 4,4-DDT ENDRIN KETONE METHOXYCHLOR	43.4	ND ND
4,4-DDD	43.4	ND
ENDOSULFAN SULFATE	43.4	ND
4,4-DDT	43.4 43.4 217.1	ND
ENDRIN KETONE	43.4	ND
METHOXYCHLOR	217.1	ND
ALPHA-CHLORDANE	217.1	ND
GAMMA-CHLORDANE	217.1	ND
ENDRIN KETONE METHOXYCHLOR ALPHA-CHLORDANE GAMMA-CHLORDANE TOXAPHENE AROCHLOR-1221	434.2	ND
		ND
AROCHLOR-1232	217.1	ND
AROCHLOR-1242	217.1	ND
ARDCHLOR-1016	217.1	ND
AROCHLOR-1248	217.1	ND
AROCHLOR-1254	434.2	ND
AROCHLOR-1260	434.2	ND

BA/BC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 79%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

S & MOORE, INC. 1 BORMAN DRIVE , LOUIS, MO 63149 M: DAVID FURINGTON

REPORT: 2371.04B

DATE: 05-03-90

MPLE MATRIX: SOIL

DATE SUBMITTED: 04-13-90

70 # 2371.04

DATE EXTRACTED: 04-17-90

HOD REF.: SW846-8270, EPA METHODOLOGY

DATE ANALYZED: 04-26-90

TECT: EARTH CITY AMPLE ID: COMP. 2

-	DET.	RESULTS	;		DET.	RESULTS	
MIVOLATILES	LIMIT	(ug/Kg)	-	SEMIVOLATILES	LIMIT	(ug/Kg)	•
NOL	660	ND		ACENAPHTHENE	660	ND	
15(2-CHLOROETHYL)ETHER	660	ND		2,4-DINITROPHENOL	3200	ND	
-SHLOROPHENOL	660	ND		4-NITROPHENOL	3200	· ND	
-DICHLOROBENZENE	660	ND		DIBENZOFURAN	660	ND	
I -DICHLOROBENZENE	660	ND		2,4-DINITROTOLUENE	660	ND	
ENZYL ALCOHOL	660	ND		2,6-DINITROTOLUENE	660	ND	
DICHLOROBENZENE	660	ND		DIETHYLPHTHALATE	660	ND	
- ETHYLPHENOL	660	ND		4-CHLOROPHENYL-PHENYLETHER	660	ND	
IS(2-CHLOROISOPROPYL)ETHER	660	ND		FLUORENE	660	ND	
TETHYLPHENOL	660	ND		4-NITROANILINE	3200	ND	•
ITROSO-DI-n-FROFYLAMINE	660	HD		4,6-DINITRO 2-METHYLPHENOL	3200	ND	
	660	ND		N-NITROSODIPHENYLAMINE(1)	660	NĎ	
TROBENZENE .	660	ND		4-BROMOPHENYL-PHENYLETHER	660	ND	
PHORONE	660	ND		HEXACHLOROBENZENE	660	ND	
ITROPHENOL	660	ND		PENTACHLOROPHENOL	660	ND	
,4-DIMETHYLPHENOL	660	ИD		PHENANTHRENE	660	30 3	ľ
ZOIC ACID	3200	30 3	J	ANTHRACENE	660	ND	
(2-CHLOROETHOXY) METHANE	660	ND		DI-N-BUTYLEHTHALATE	660	50 - 3	Ī
-DICHLOROPHENOL	660	ND		FLUORANTHENE	660	50 3	3
-3,4-TRICHLOROBENZENE	660	ND		PYRENE	660	30 3	1
HTHALENE	660	ND		BUTYLBENZYLPHTHALATE	660	ND	
HLOROANILINE	660	NĎ		3,3-DICHLOROBENZIDINE	1320	ND	
EXACHLOROBUTADIENE	660	ND		BENZO (A) ANTHRACENE	660	ND	
HLORO-3-METHYLPHENOL	660	ND		BIS(2-ETHYLHEXYL)PHTHALATE	660	ND	
ETHYLNAPHTHALENE .	660	10	J	CHRYSENE	660	ND	
EXACHLOROCYCLOPENTADIENE	660	ND		DI-N-OCTYL PHTHALATE	660	ND	
,6-TRICHLOROPHENOL	660.	ND		BENZO(B)FLUORANTHENE	660	ND	
,5-TRICHLOROPHENOL	3200	ND		BENZO(K)FLUORANTHENE	660	ND	
HLORONAPHTHALENE	660	ND		BENZO(A)PYRENE	660	ND	
:-NITROANILINE	3200	ND		INDENO(1,2,3-CD)PYRENE	660	ND	
ETHYLPHTHALATE	660	ND		DIBENZ(A,H)ANTHRACENE	660	ND	
NAPHTHYLENE	660	ND		BENZO(G,H,I)FERYLENE	660	ND	
-NITROANILINE	3200	ND		· •.			

QA/QC SURROGATE RECOVERIES

ROBENZENE-d5(23-120) 74% 2-FLUOROBIPHENYL(30-115) 79% TERPHENYL-d14 (18-137) 89% (24-113) 89% 2-FLUOROPHENOL (25-121) 70% 2,4,6-TRIBROMOPHENOL(19-122) 91%

⁼ NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE SURROGATE RECOVERY DUTSIDE OF GC LIMITS

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT:

DAMES & MOORE

11701 BORMAN DRIVE

ST. LOUIS, MISSOURI 63149

ATTN: DAVE PURINGTON

REPORT: 2371.05MT

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWLD # 2371.05

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 1

PARAMETER	DET. LIMIT UNIT		RESULTS	DATE ANALYZED	METHOD REFERENCE		
TOTAL CYANIDES	1.0	ug/Kg	ND	04-27-90	SM 412D		
TOTAL METALS							
_ARSENIC	2.0	mg/kg	5.89	04-25-90	SW 7060		
LEAD	0.6	mg/kg	13.6	04-19-90	SW 7421		
MERCURY	0.1	mg/kg	ND	04-18-90	SW 7471		
SELENIUM	0.4	mg/kg	ND	04-24-90	SW 7740		
THALLIUM	0.4	mg/kg	ND	04-19-90	SW 7841		
ANTIMONY	6.0	mg/kg	ND	04-19-90	SW 6010		
BERYLLIUM	1.0	mg/kg	ND	04-19-90	SW 6010		
—CADMIUM	1.0	mg/kg	ND	04-19-90	SW 6010		
CHROMIUM	1.0	mg/kg	18.1	04-19-90	SW 6010		
COPPER	2.0	mg/kg ~	22.8	04-19-90	SW 6010		
NICKEL	2.0	mg/kg	18.3	04-19-90	SW 6010		
SILVER	2.0	mg/kg	ND	04-19-90	SW 6010		
JZINC	2.0	mg/kg	62.4	04-19-90	SW 6010		

D = NOT DETECTED ABOVE QUANTITATION LIMIT

⁼ TEST METHODS FOR EVALUATING SOLID WASTE, EPA PUBLICATION #SW846, THIRD EDITION, NOVEMBER 1986

⁼ STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER, 16TH EDITION, 1985

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

CLIENT:

DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID FURINGTON

SAMPLE MATRIX: SOIL

SWLD # 2371.05

DATE SUBMITTED: 04-13-90

PROJECT: EARTH CITY SAMPLE ID: COMP. 1

PARAMETER	DET. LIMIT	UNIT	RESULTS	DATE EXTRACTED	DATE ANALYZED	METHOD REFERENCE
TAL EXTRACTABLE HY	DROCARBO	NS.		· .		
GASOL INE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
MESEL	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
EROSENE	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
51 -4	1.0	mg/Kg	ND	04-19-90	04-21-90	GC/FID
-NAPTHA	1.0	mg/Kg	ND ·	04-19-90	04-21-90	GC/FID
UNKER C/#6 FUEL OIL	1.0	mq/Kq	ND	04-19-90	04-21-90	GC/FID
ISCELLANEOUS (1)	1.0	mg/Kg	5.1	04-19-90	04-21-90	GC/FID

QA/QC SURROGATE RECOVERY

NAPHTHALENE

95%

REPORT:

DATE:

2371.05T

05-03-90

= NOT DETECTED ABOVE QUANTITATION LIMIT

= COMPOUND FOUND IN BLANK AS WELL AS SAMPLE

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= UNABLE TO QUANTITATE DUE TO MATRIX INTERFERENCE

^{(1) =} ANALYSIS SHOWS MISCELLANEOUS PEAKS WHICH CANNOT BE IDENTIFIED AS ANY SPECIFIC PATTERN. THE RESPONSE FACTOR FOR DIESEL WAS USED.

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE, INC. IENT:

REPORT: 2371.05H

11701 BORMAN DRIVE

DATE: 05-03-90

ST. LDUIS, MD 63149 ATTN: DAVID PURINGTON

SAMPLE MATRIX: SOIL

SWL0 # 2371.05

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EFA METHODOLOGY

SAMPLE ID: COMP. 1

RESULTS REPORTED IN ug/kg OR Parts Per Billion

DET

ERBICIDES	LIMIT	UNIT	RESULTS
	80.0	ug/Kg	ND
	10.0	ug/Kg	ND

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

99.4%

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany • Suite "C" • Broken Arrow, Oklahoma 74012 • 918-251-2858

DAMES & MOORE, INC. 11701 BORMAN DRIVE ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: 2371.05P

DATE: 05-03-90

SAMPLE MATRIX: SOIL

SWL0 # 2371.05

DATE SUBMITTED: 04-13-90 DATE EXTRACTED: 04-17-90 DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY SAMPLE ID: COMP. 1

RESULTS REPORTED IN ug/Kg OR Farts Fer Billion (FFB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALFHA-BHC	21.2	ND
BETA-BHC	21.2	ND
GAMMA-BHC(LINDANE)	21.2	. ND
DELTA-BHC	21.2	ND
HEFTACHLOR	21.2	ND
ALDRIN	21.2	ND
HEPTACHLOR EPOXIDE	21.2	ND
ENDOSULFAN I	21.2	MD
4,4-DDE	21.2	ND
DIELDRIN	42.3	- ND
ENDRIN	42.3	ND
ENDOSULFAN II	42.3	ND
4,4-DDD	42.3	ND
ENDOSULFAN SULFATE	42.3	ND
4,4-DDT	42.3	ND
ENDRIN KETONE	42.3	ND
METHOXYCHLOR	211.6	ND
ALPHA-CHLORDANE	211.6	ND
GAMMA-CHLORDANE	211.6	ND
TOXAPHENE	423.3	ND
ARDCHLOR-1221	211.6	ND
AROCHLOR-1232	211.6	ND
AROCHLOR-1242	211.6	ND
AROCHLOR-1016	211.6	ND
AROCHLOR-1248	211.6	ND
AROCHLOR-1254	423.3	ND
AROCHLOR-1260	423.3	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 102%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

* = SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

HES & MOORE, INC. 701 BORMAN DRIVE , LOUIS, MD 63149 N: DAVID PURINGTON

REPORT: 2371.05B

DATE: 05-03-90

MATRIX: SOIL

0 # 2371.05

THOD REF.: SW846-8270, EFA METHODOLOGY

ROJECT: EARTH CITY JPLE ID: COMP. 1

DATE SUBMITTED:	04-13-90
DATE EXTRACTED:	04-17-90
DATE ANALYZED :	04-26-90

IVOLATILES	DET. LIMIT	RESULTS (uq/Kg)	<u>SEMIVOLATILES</u>	DET. LIMIT	RESULT:	_
ENOL	660	ND	ACENAPHTHENE	660	ND	
IS(2-CHLOROETHYL)ETHER	660	ND	2,4-DINITROPHENOL	3200	ND	
■ CHLOROPHENOL	660	ND	4-NITROPHENOL	3200	ND	
S-DICHLOROBENZENE	660	ND	DIBENZOFURAN	660	ND	
4-DICHLOROBENZENE	660	ND	2,4-DINITROTOLUENE	660	ND	
VZYL ALCOHOL	660	ND	2,6-DINITROTOLUENE	660	ND	
2-DICHLOROBENZENE	660	ND	DIETHYLPHTHALATE	660	ND	
-METHYLPHENOL	660	ND	4-CHLOROPHENYL-PHENYLETHER	660	ND	
	660	ND	FLUORENE -	660	ND	
# METHYLPHENOL	660	ND	4-NITROANILINE	3200	ND	
- FNITROSO-DI-n-PROPYLAMINE	660	ND	4,6-DINITRO 2-METHYLPHENOL	3200	ND	
<u>IEXACHLOROETHANE</u>	660	ND	N-NITROSODIFHENYLAMINE(1)	660	ND	
TROBENZENE	660	ИD	4-BROMOPHENYL-PHENYLETHER	660	ND	
LDPHORONE	660	ND	HEXACHLOROBENZENE	660	ND	•
-NITROPHENOL	660	ND	PENTACHLOROPHENOL	660	ПD	
-1-4-DIMETHYLPHENOL	660	ND	PHENANTHRENE	660	ND	
NZOIC ACID	3200	ND	ANTHRACENE	660	ND	
TS(2-CHLOROETHOXY) METHANE	660	ND	DI-N-BUTYLPHTHALATE	660	ND	
<u>21</u> 4-DICHLOROFHENOL	660	ND	FLUORANTHENE	660 .		J
2,4-TRICHLOROBENZENE	660	ND	PYRENE	660	30	J
PHTHALENE	660	ND	BUTYLBENZYLPHTHALATE	660	ND	
4-CHLOROANILINE	660	ND	3,3-DICHLOROBENZIDINE	1320	ND	
XACHLOROBUTADIENE	660	ND	BENZO(A)ANTHRACENE	660	ND	
_CHLORO-3-METHYLPHENOL	660	ND	BIS(2-ETHYLHEXYL)PHTHALATE	660	ND	
T-METHYLNAPHTHALENE	660	ND	CHRYSENE	660	ND	
WEXACHLOROCYCLOPENTADIENE	660	ND	DI-N-OCTYL PHTHALATE	660	ND	
4,6-TRICHLOROPHENOL	660	ND	BENZO(B)FLUORANTHENE	660	ND	
4,5-TRICHLOROPHENOL	3200	ND	BENZO(K)FLUORANTHENE	660	ND	
2_CHLORONAPHTHALENE	660	ND	BENZO(A)PYRENE	660	ND	
-NITROANILINE	3200	ND	INDENO(1,2,3-CD)PYRENE	660	ND	
METHYLPHTHALATE	660	ND	DIBENZ(A;H)ANTHRACENE	660	ND	
ACENAPHTHYLENE	660 .	ND	BENZO(G,H,I)PERYLENE	660	ND	
NITROANILINE	3200	ND				
			* •			

QA/QC SURROGATE RECOVERIES

₹TROBENZENE-d5(23-120) 72% 2-FLUOROBIFHENYL(30-115) 78% TERFHENYL-d14 84% (18-137)PHENOL-d5 (24-113) 84% 2-FLUOROPHENOL (25-121) 67% 2,4,6-TRIBROMOPHENOL(19-122)

= NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

- SURROGATE RECOVERY OUTSIDE OF GC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

ANALYTICAL REPORT

DAMES & MOORE 11701 Borman Drive

St. Louis. Missouri 63149

REPORT: G2698

REPORT DATE: 04/30/90

SWLO IDENTIFICATION

SAMPLE NO.: 2371.01 - 2371.05 DATE RECEIVED: 04/13/90

QA /Qf

DESCRIPTION		PARAMETER	RESULTS
METHOD BLANK METHOD BLANK METHOD BLANK	04/19/90 04/19/90 04/19/90 04/19/90 04/19/90 04/19/90	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER NICKEL SILVER	<pre><6 mg/Kg <1 mg/Kg <1 mg/Kg <1 mg/Kg <1 mg/Kg <2 mg/Kg <2 mg/Kg <2 mg/Kg</pre>
METHOD BLANK	04/19/90	ZINC	<2 mg/Kg

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: G2698.2

DATE: 05-03-90

SAMPLE MATRIX: SOIL SWLO # METHOD BLANK

DATE EXTRACTED: 04-27-90 DATE ANALYZED: 05-02-90

PROJECT: EARTH CITY

METHOD REFERENCE: SW846-8150, EPA METHODOLOGY

SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/Kg OR Parts Per Billion

HERBICIDES	DET. LIMIT	UNIT	RESULTS
2,4-D	80.0	ug/Kg	ND
-2,4,5-TF (SILVEX)	10.0	ug/Kg	ND

GA/GC SURROGATE RECOVERY

2,4,5-T (10-98)

45.2%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

= ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

= ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC. 1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

DAMES & MOORE, INC.

11701 BORMAN DRIVE

ST. LOUIS, MO 63149

ATTN: DAVID PURINGTON

REPORT: G2698.3

DATE: 05-03-90

SAMPLE MATRIX: SOIL SWLO # METHOD BLANK

DATE EXTRACTED: 04-17-90 DATE ANALYZED : 05-02-90

METHOD REFERENCE: SW846-8080, EPA METHODOLOGY

PROJECT: EARTH CITY SAMPLE ID: METHOD BLANK

RESULTS REPORTED IN ug/Kg OR Parts Per Billion (PPB)

PESTICIDES/PCB'S	DETECTION LIMIT	RESULTS
ALPHA-BHC	16.0	ND
BETA-BHC	16.0	. ND
GAMMA-BHC(LINDANE)	16.0	ND
DELTA-BHC	16.0	ND
HEFTACHLOR	16.0	ND
ALDRIN	16.0	ND
HEPTACHLOR EPOXIDE	16.0	ND
ENDOSULFAN I	16.0	ИD
4,4-DDE	16.0	ND
DIELDRIN	32.0	ND
ENDRIN	32.0	ND
ENDOSULFAN II	32.0	. ND
4,4-DDD	32.0	ND
ENDOSULFAN SULFATE	32.0	ND
4,4-DDT	32.0	ND
ENDRIN KETONE	32.0	ND
METHOXYCHLOR	160.0	ND
ALPHA-CHLORDANE	160.0	ND
GAMMA-CHLORDANE	160.0	ND
TOXAPHENE	320.0	ND
AROCHLOR-1221	160.0	ND
AROCHLOR-1232	160.0	ND
AROCHLOR-1242	160.0	ND
AROCHLOR-1016	160.0	ND
AROCHLOR-1248	160.0	ND
AROCHLOR-1254	320.0	ND
AROCHLOR-1260	320.0	ND

QA/QC SURROGATE RECOVERIES

DIBUTYLCHLORENDATE (24-150) 24%

ND = NOT DETECTED ABOVE QUANTITATION LIMIT

J = ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

B = ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

= SURROGATE RECOVERY OUTSIDE OF QC LIMITS

SOUTHWEST LABORATORY OF OKLAHOMA, INC.

1700 W. Albany . Suite "C" . Broken Arrow, Oklahoma 74012 . 918-251-2858

MES & MOORE, INC. 701 BORMAN DRIVE . LOUIS, MO 63149 TN: DAVID PURINGTON REFORT: G2698.4

DATE: 05-03-90

MPLE MATRIX: SOIL

LO # METHOD BLANK THOD REF.: SW846-8270, EPA METHODOLOGY DATE EXTRACTED: 04-17-90 DATE ANALYZED: 04-26-90

DJECT: EARTH CITY MPLE ID: METHOD BLANK

	1			• •	1	
	MIVOLATILES	DET. LIMIT	RESULTS (ug/Kg)	SEMIVOLATILES	DET. LIMIT	RESULTS (ug/Kg)
	ENOL .	660	ND	ACENAPHTHENE	660	ND
	3(2-CHLOROETHYL)ETHER	660	ND	2,4-DINITROPHENOL	3200	ND
Ξ	CHLOROFHENOL	660	ND	4-NITROPHENOL	3200	ND
	5-DICHLOROBENZENE	660	ND	DIBENZOFURAN	660	ND
	4-DICHLOROBENZENE	660	ND	2,4-DINITROTOLUENE	660	ND
	NZYL ALCOHOL	660	ND	2,6-DINITROTOLUENE	660	ND
_	2-DICHLOROBENZENE	660	ND	DIETHYLPHTHALATE	660	ND
	METHYLFHENOL	660	ND	4-CHLOROPHENYL-PHENYLETHER	660	ND
	S(2-CHLOROISOPROPYL)ETHER	660	ND	FLUORENE	660	ND .
=	METHYLFHENOL	660	ND	. 4-NITROANILINE	3200	ND
_	NITROSO-DI-n-PROFYLAMINE	660	ND	4,6-DINITRO 2-METHYLPHENOL	3200	ND
	KACHLOROETHANE	660	ФИ	N-NITROSODIPHENYLAMINE(1)	660	ND
	TROBENZENE	660	ND	4-BROMOPHENYL-PHENYLETHER	660	ND
	PPHORONE	660	ND	HEXACHLOROBENZENE	640	ND
	NITROPHENOL	660	ND	PENTACHLOROPHENOL	660	ND
	4-DIMETHYLPHENOL	660	ND	PHENANTHRENE	660	ND
	"NZDIC ACID	3200	ND	ANTHRACENE	660	ND
	3(2-CHLOROETHOXY)METHANE	660	ND	DI-N-BUTYLPHTHALATE	660	ND
	4-DICHLOROPHENOL	660	ND	FLUORANTHENE	660	ND
	2.4-TRICHLOROBENZENE	660	ND	FYRENE	660	ND
_	PHTHALENE	660	ND	BUTYLBENZYLPHTHALATE	660	ND
	CHLOROANILINE	660	ND	3,3-DICHLOROBENZIDINE	1320	ND
	XACHLOROBUTADIENE	660	ND	BENZO(A)ANTHRACENE	660	ND
	THLORO-3-METHYLPHENOL	660	ND	BIS(2-ETHYLHEXYL)PHTHALATE	660	ND
	_1ETHYLNAPHTHALENE	660	ND	CHRYSENE	660	ND
	KACHLOROCYCLOPENTADIENE -	660	ND	DI-N-OCTYL PHTHALATE	660	ND
	4,6-TRICHLOROPHENOL	660	ND	BENZO(B)FLUORANTHENE	660	ND
	1,5-TRICHLOROPHENOL	3200	ND	BENZO(K)FLUORANTHENE	660	ND
	CHLORONAPHTHALENE	660	ND	BENZO(A)PYRENE	660	ND
-	NITROANILINE	3200	ND	INDENO(1,2,3-CD)PYRENE	660	ND
	TETHYLPHTHALATE	660	ND	DIBENZ(A,H)ANTHRACENE	660	ND
	NAPHTHYLENE	660	ND	BENZO(G,H,I)PERYLENE	660	ND
	-NITROANILINE	3200	ND			•

QA/QC SURROGATE RECOVERIES

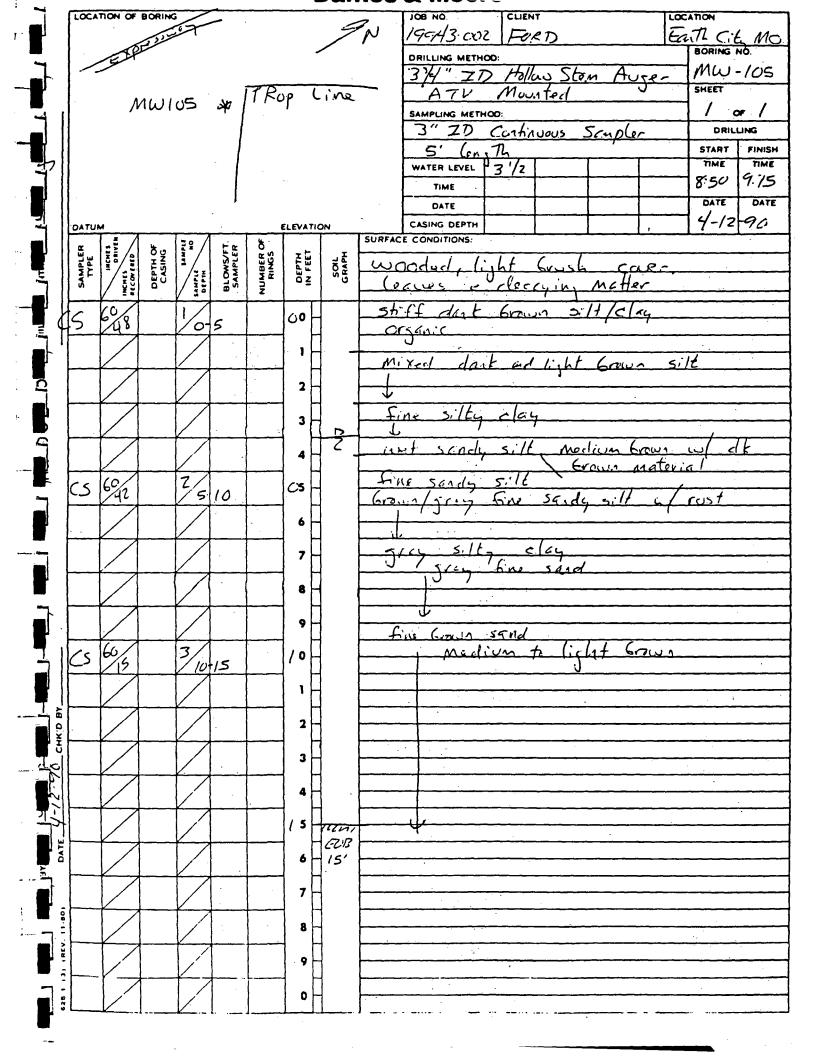
ROBENZENE-d5(23-120) 65% 2-FLUOROBIPHENYL(30-115) 64% TERPHENYL-d14 (12-137) 65% ■NOL-d5 (24-113) 76% 2-FLUOROPHENOL (25-121) 62% 2,4,6-TRIBROMOPHENOL(19-122) 68%

_= NOT DETECTED ABOVE QUANTITATION LIMIT

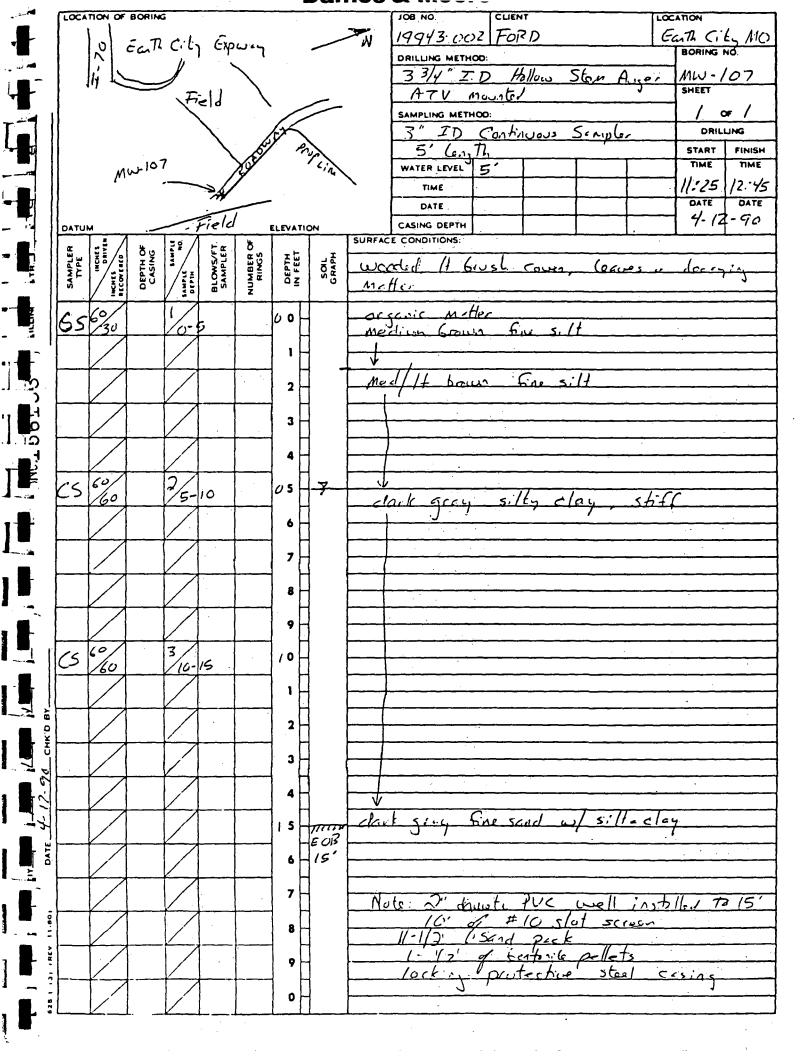
^{*} ESTIMATED VALUE: CONCENTRATION BELOW LIMIT OF QUANTITATION

⁼ ANALYTE DETECTED IN BLANK AS WELL AS SAMPLE

⁼ SURROGATE RECOVERY OUTSIDE OF QC LIMITS


APPENDIX D Soil Boring Logs LOCATION OF BORING JOB NO. CLIENT LOCATION 19943.002 BORING NO. DRILLING METHOD: MW/0/ SAMPLING METHOD: DRILLING START FINISH TIME TIME WATER LEVEL TIME DATE DATE DATE CASING DEPTH ELEVATION SURFACE CONDITIONS: DEPTH IN FEET SOL 20 2 25 COB 25' 6 2 3 7

LOCATION OF BORING LOCATION 19943 cuz EAR (, L MO MW10Z MW/02 or Z SAMPLING METHOD: ID Continuous Samples DRILLING Cardfill START FINISH TIME TIME WATER LEVEL 19:5 10.00 TIME DATE DATE DATE 4-11+ 90 CASING DEPTH ELEVATION SURFACE CONDITIONS: SOL 70pSuil **()0** sady silt 2 3 CS 60/30 05 6 Groun Medium Schol 7 3 10 1015 1 3 15 6 7 8 botton 3" wet 20


JOB NO. CLIENT LOCATION OF BORING LOCATION 19943.002 FORD BORING NO. DRILLING METHOD: MULIOZ SHEET SAMPLING METHOD: DRILLING START FINISH TIME TIME WATER LEVEL TIME DATE DATE DATE CASING DEPTH ELEVATION SURFACE CONDITIONS: DEPTH IN FEET 20 No setrainel 25 EZB 251 6 7 7

Dames & Moore 19943-002 Ford LOCATION OF BORING BORING NO. DRILLING METHOD:

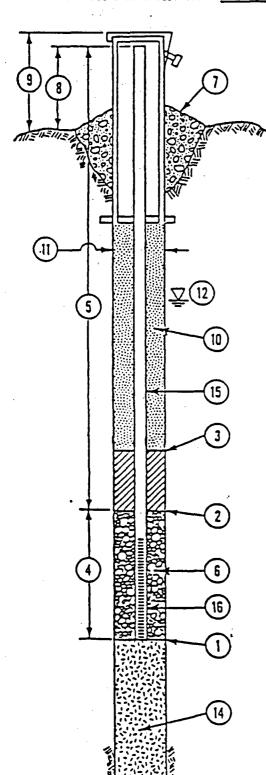
374" Hollow Stem Augors Water MW-103 pitch SAMPLING METHOD: START WATER LEVEL TIME DATE 0469 04/09 (380N/SW) MW-10 BEVATION CASING DEPTH 0 C5/60" I Moist gray, med stiff to stiff, fine Steel Pro SandiWB-35 Well: 2"Dia PV Screen: #10 Slot Size E08-18' Examtopof PVC

	LOCA	TION OF	BORING	3			- '`		100	B NO.	CUEN	T		ILOC	ATION	
<u>.</u>								لىر		943-002				Ea	AL CIL	Mo
	<u> </u>								DR	ILLING METH	OD: -		·			
1						. [[3	3/4" I.	D H	slku S	Ecm Au	ger.	MW.	106
					,				ļ		mante	<u>d</u>		U	SHEET	_ ,
7		M	w-10	·C						MPLING METH			<u>C1</u>	-	/ C	ING
		<i>(</i> 71)	w-10 *			- 1.	_		ا ا	5' (20)	CONTIA	<u> </u>	Saple		START	FINISH
	Shal	امرط			henne	,	/		w	S (20)	9'				TIME	TIME
	}			0	-		150'			TIME		 			10:15	
		_	1 4	150'		Ho)	P Corr	ن ~		DATE					DATE	DATE
<u>.</u>	DATU	4		· .		-1	ELEVAT	ON		SING DEPTH					4-12	-90
] <u>#</u>		ړۀ	1 0 /	F. 83	φ. δ.	1 = 5	Ţ	SURFACE CO			 		1		
`	SAMPLER TYPE	INCHES DE	DEPTH OF CASING		BLOWS/FT.	NUMBER OF RINGS	DEPTH IN FEET	SOIL	woode			Cove	, 60	ces e		
-=	Ŋ	N S	, a	1	BL S	ž	102		_decc	M Lin	etter	<u>· </u>				
	CS	60/		1/			00		dack	Graws	clay	/s: 1+	w/ q	سجهمز	< Mch	es
	<u> </u>	97		10-	5			-	<u>mediu</u>	w Promu	\$00°	e s: 17	<u>'u/</u>	rust	- spot	<u>s</u>
		/					1 -	┤·	_		:- -	· · · —	 .			
` -							1 _	_		nldark	6rows	£.va	silt			
=				<u>/_</u>			2] .	₹.				/			
· "							3	∤ .	stiff	dark 6	തയാ	silty	clay	<u>w/ r</u>	ust.	
							1 }	1	Mali	in Grand		1/2 56				
_							4	1		m post	<u>, s</u>		<u>ा व</u>			
	CS	60/		2/			05]	1						,	
	$\frac{C^3}{}$	45		15	0			-	dk (Grown	5:1tz	cley	<u> </u>	rust	, 	
; ·						•	6	1			• • • • • • • • • • • • • • • • • • • •					
			·				_	1								
_							7									
1							8	-								
			_	Y->			\ \	-	$\overline{}$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
							9	17	£ve	silty s	and	tish	t and	Mois	7	
	\ <u>\</u>	60/		3/	4		10			7		J				
		48		10	15		}	1	Uevy	L. 1 L -		s · /1.	<u> </u>		 	
							']		المرات و	7	<u> </u>	2169			
1 = = 9							2]	L L				· · · · · · · · · · · · · · · · · · ·			
4 = X	 			K-,			{ ⁻├	4	brown	13864	Sandy	5:1F	<u>~/</u>	rust		
							3	1	- Cin.	500-		· · · · ·				
	 			1		-	4]	alk	7564	6 re	elay		<u> </u>		
				\swarrow			•[4		7		7				
- 5	ŀ			/			/5	ma	\							
A BO	-			1			1 . }	FOB		·		.		<u> </u>		
ò					·		6	15'								
		$ \mathcal{I} $		17			7	1	· · · · · · · · · · · · · · · · · · ·	· · ·						
² .	 		 	\leftarrow			 	1		 					-	
			}				8	1								
, 				/	1	1.	,]			<u> </u>					
		<u>И</u> .,	}	K.,		·	, 	-		· · · - · · · · · · · · · · · · · · · ·						
:	ļ	/					0	-			;					
'\ \	L	<i>V</i>		<i>V</i>	<u>1 · · ·</u> .	L	11	<u> </u>			<u></u>	 – –				
	_												•			
THE STATE OF THE S	_															

APPENDIX E
Well Construction Diagrams

GROUND SURFACE ELEVATION	GOO-619943 AUMBER 19943-003
TOP OF WELL CASING ELEVATION 447.6	6 BORING HUMBER MW-101
	DATE 4-11-90
	LOCATION . EarTh City MO
	OEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 25 FEET. *
600 Janes 1811 M	12.5 FEET. * BENTEINITE Pellets
	① DEPTH TO TOP OF SEAL (IF INSTALLED) 9.5 FEET.*
	LENGTH OF VELL SCREEN 10 FEET. SLOT SIZE 0.010
	5 TOTAL LENGTH OF PIPE 17.3 FEET AT
5) = (10)	TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND.
	1 CONCRETE CU. YES NO (CIRCLE ONE)
15)	HEIGHT OF VELL CASING ABOVE GROUND
	PROTECTIVE CASING? YES NO (CIRCLE ONE) HEIGHT ABOVE GROUND FEET. LOCKING CAPT YES NO (CIRCLE ONE)
2	10 TYPE OF UPPER BACKFILL COMEN S. LUVIY
	11) BOREHOLE DIAMETER 8 INCHES.
	12 DEPTH TO GROUND WATER 16 FEET. *
16	(13) TOTAL DEPTH OF BOREHOLE 35 FEET.*
	14 TYPE OF LOVER BACKFILL UA.
	15 PIPE MATERIAL PUC.
14)	16 SCREEN MATERIAL PUC.
	*(DEPTH FROM GROUND SURFACE)

GROUND SURFACE ELEVATION	DB HUMBER 19943-000
TOP OF WELL CASING ELEVATION 448.	98 BORING NUMBER MW-102
	DATE 4-11-90
	LOCATION . Earth City Mo
	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 24.5 FEET. *
MENERAL COOL CONTRACTOR OF THE PROPERTY OF THE	2 DEPTH TO BOTTOM OF SEAL (IF INSTALLED) FEET. * Bentonite Pellets
	DEPTH TO TOP OF SEAL (IF INSTALLED) 9.5 FEET.*
	LENGTH OF WELL SCREEN /O FEET. SLOT SIZE O:0/0.
	TOTAL LENGTH OF PIPE 16.8 FEET AT
(5)	TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND
	TONCRETE CAP. TES HO (CIRCLE ONE)
15)	HEIGHT OF VELL CASING ABOVE CROUND
	PROTECTIVE CASING? YES MO (CIRCLE ONE) HEIGHT ABOVE GROUND FEET. LOCKING CAP? YES NO (CIRCLE ONE)
2	10 TYPE OF UPPER BACKFILL CEALED Sloving
	BOREHOLE BIANETER 8 INCHES.
	12 DEPTH TO GROUND WATER 20 FEET. *
	(1) TOTAL DEPTH OF BOREHOLE 25 FEET.*
	11) TYPE OF LOVER BACKFILL NATURAL SAND & S; H
	(S) PIPE MATERIAL PUC.
14)	(16) SCREEN MATERIAL PUC.
	* (DEPTH FROM GROUND SURFACE)


GROUND SURFACE ELEVATION	DB NUMBER
TOP OF WELL CASING ELEVATION 441.1	6 BORING NUMBER MW-103
•	DATE 04/04/40
	LOCATION . Earth City MO
9 1 1 7	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 15.7 FEET. *
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 DEPTH TO BOTTOM OF SEAL (IF INSTALLED) Bentanite Pellets
	DEPTH TO TOP OF SEAL (IF INSTALLED) 2.5 FEET. *
	LENGTH OF WELL SCREEN /D FEET. SLOT SIZE 0.0/0.
∇	TOTAL LENGTH OF PIPE 8.4 FEET AT 2 INCH DIAMETER.
(5)	TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE Sand
	(CIRCLE ONE)
(15)	HEIGHT OF WELL CASING ABOVE GROUND 2.7 FEET.
(3)	PROTECTIVE CASING? (CIRCLE ONE) HEIGHT ABOVE GROUND 7. 8 FEET. LOCKING CAP? (CIRCLE ONE)
2	10 TYPE OF UPPER BACKFILL coment slorry
	1 BOREHOLE DIAMETER & INCHES.
	12 DEPTH TO GROUND WATER
16	13 TOTAL DEPTH OF BOREHOLE / B FEET.*
	TYPE OF LOVER BACKFILL Natural Sand +5 ilt
	(15) PIPE MATERIAL PVC.
(14)	(16) SCREEN MATERIAL PVC
	*(DEPTH FROM GROUND SURFACE)
13	

Dames & Moore

GROUND SURFACE ELEVATION	лов нинвек <u>19943- 0</u> 02
TOP OF WELL CASING ELEVATION 441. 8	
	DATE 4-11-90
I THINK	LOCATION . Earth City MO
	DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 17 FEET. *
6:00 AT STATE OF THE PARTY OF T	OEPTH TO BOTTOM OF SEAL (IF INSTALLED) FEET. * Bentanite Pellets
	DEPTH TO TOP OF SEAL (IF INSTALLED)
	LENGTH OF WELL SCREEN /O FEET. SLOT SIZE O- O/O .
(1) 	TOTAL LENGTH OF PIPE 9-9 FEET AT
(5)	TYPE OF PACK AROUND WELL POINT OR SLOTTED SAND
	ONCRETE CAP. YES NO (CIRCLE ONE)
(15)	HEIGHT OF WELL CASING ABOVE GROUND
(3)	PROTECTIVE CASING? YES HO (CIRCLE ONE) HEIGHT ABOVE GROUND FEET. LOCKING CAP? YES NO (CIRCLE ONE)
	10 TYPE OF UPPER BACKFILL COMENT.
	1) BOREHOLE DIAMETER 8 INCHES.
	12 DEPTH TO GROUND WATER
16	13 TOTAL DEPTH OF BOREHOLE 17 FEET.*
	(1) TYPE OF LOVER BACKFILL NA.
	(5) PIPE HATERIAL PUC
14)	(16) SCREEN MATERIAL PVC.
	*(DEPTH FROM GROUND SURFACE)
M	ONITOR WELL INSTALLATION DETAILS

TOP OF WELL CASING ELEVATION 440. 17

DIS NUMBER 19943-002BORING NUMBER $M\omega-105$ DATE 4-12-90LOCATION . Earth City MC

[13]

- DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 15 FEET. *
- 2 DEPTH TO BOTTOM OF SEAL (IF INSTALLED)

 3.5 FEET. * BENTON. to Pellet,
- DEPTH TO TOP OF SEAL (IF INSTALLED)
- LENGTH OF WELL SCREEN (O FEET.
- TOTAL LENGTH OF PIPE 7-3 FEET AT OF MICH DIAMETER.
- TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND
- TO CONCRETE CAP. YES MO (CIRCLE GIE)
- HEIGHT OF WELL CASING ABOVE GROUND PEET.
- PROTECTIVE CASING? YES MO (CIRCLE ONE)
 HEIGHT ABOVE GROUND FEET.
 LOCKING CAP? YES NO (CIRCLE ONE)
- 10 TYPE OF UPPER BACKFILL COMENT
- (II) BOREHOLE DIAMETER 8 INCHES.
- 12 DEPTH TO GROUND WATER 3 1/2 FEET. *
- (1) TOTAL DEPTH OF BOREHOLE 15 FEET. *
- (1) TYPE OF LOVER BACKFILL N/A.
- 15 PIPE MATERIAL PVC
- 16 SCREEN MATERIAL PVC

* (DEPTH FROM GROUND SURFACE)

19943-002 GROUND SURFACE ELEVATION R38HUN BOL TOP OF WELL CASING ELEVATION 444.70 MW-106 BORING NUMBER 4-12-90 DATE DEPTH TO BOTTOM OF VELL POINT OR SLOTTED PIPE___15___FEET. * DEPTH TO BOTTOM OF SEAL (IF INSTALLED) 3-5 FEET. * Bentanila Pellats DEPTH TO TOP OF SEAL (IF INSTALLED) SEET. * SLOT SIZE O. O.O. (41)TOTAL LENGTH OF PIPE 2 INCH DIAMETER. <u></u> ✓ (12) TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE_______. (1) CONCRETE CAP. (YES) (CIRCLE O:TE) HEIGHT OF WELL CASING ABOVE GROUND PROTECTIVE CASING? YES (3) HEIGHT ABOVE GROUND TES LOCKING CAPT (CIRCLE ONE) (10) TYPE OF UPPER BACKFILL C'EMENT. 2 ___INCHES. (12) DEPTH TO GROUND WATER 9 6 (13) TOTAL DEPTH OF BOREHOLE 15 [16] (14) TYPE OF LOVER BACKFILL (15) PIPE MATERIAL (16) SCREEN HATERIAL [14] * (DEPTH FROM GROUNG SURFACE)

MONITOR WELL INFORMATION SHEET

Dames & Moore

GROUND SURFACE ELEVATION	JOB MUMBER 19943-002
TOP OF WELL CASING ELEVATION 449-	BORING NUMBER NW-107
	DATE 4-12-90
	LOCATION . East City MO
	1 DEPTH TO BOTTOM OF WELL POINT OR SLOTTED PIPE 15 FEET. *
THE WELL SO OF THE WAY TO SEE THE WA	DEPTH TO BOTTOM OF SEAL (IF INSTALLED) 3.5 FEET.*
	DEPTH TO TOP OF SEAL (IF INSTALLED) FEET. *
	LENGTH OF WELL SCREEN 10 FEET. SLOT SIZE 0.010
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOTAL LENGTH OF PIPE FEET AT DIAMETER.
(5)	TYPE OF PACK AROUND WELL POINT OR SLOTTED PIPE SAND
	TO CONCRETE CAP. YES MO (CIRCLE ONE)
(15)	HEIGHT OF WELL CASING ABOVE GROUND
3	PROTECTIVE CASING? (CIRCLE ONE) HEIGHT ABOVE GROUND FEET. LOCKING CAP? (CIRCLE ONE)
	10 TYPE OF UPPER BACKFILL COM en 1.
	11) BOREHOLE DIAMETER 8 INCHES.
	(12) DEPTH TO GROUND WATER
	(1) TOTAL DEPTH OF BOREHOLE 15 FEET.* (1) TYPE OF LOVER BACKFILL NA.
	(15) PIPE MATERIAL PVC.
14	16 SCREEN MATERIAL PVC.
	*(DEPTH FROM GROUND SURFACE)

APPENDIX F
Groundwater Field Measurements

Field Personnel	Job 1	No. <u>19943-002</u>
D. Purinton	Loca	tion Earth City M
J. Peck	Well	No. Mw. 101
	Date	Apr:1 16, 1990
Total Well Depth (from	top of casing)	27.3 feet
Depth to Water Surface	(from top of casing)	18.58 feet
Height of Water Column		877 feet

Volume of Water Column (height x 0.163)

/₅4 gallons

Well Volumes Purged	Specific Conductance	Temperature	Нq
Units	Mi creinhos	OF	standard units
1	1067	63.9	7.04
2	712	69.3	7-06
3	711	61.8	7. as
4	714	62.0	7.07
5		·	
6			
7			·
8			

Field Personnel	Job No. 19943-002	
D Rington	Location Earl City N	10
M. Swonson	Well No. Mw - 102	
	Date April 17, 199	70
Total Well Depth (from top of casing) Depth to Water Surface (from top of cas		
Height of Water Column	<u>663</u> feet	
Volume of Water Column (height v 0.163)	1.08 gallons	=

Well Volumes Purged	Specific Conductance	Temperature	Нд
Units	Micronhos	o F	standard units
1	956	549	7.20
2	942	53-3	7-27
3	959	51.2	7-26
4	956	52.1	7.25
5	965	52.7	7.20
6			
7			
8			

Field Personnel	Job No. 19943-002	
D PURINGTON	Location Earl City M	<u> </u>
M. Swanson	Well No. Mw 103	
	Date <u>Apr. 1</u> 17, 19°	
Total Well Depth (from top of casing	g) <u>18-4</u> feet	
Depth to Water Surface (from top of	casing) 11 97 feet	
Height of Water Column	<u>648</u> feet	
Volume of Water Column /height w 0 1	162) / 06 %211005	

Well Volumes Purged	Specific Conductance	Temperature	pH ·
Units	Micromhos	0[-	standard units
1	695	600	7.00
2	677	5 <i>8</i> 4	7.05
3	677	592	7.00
4			
5			
6	·		
7			
8			

Field Personnel	Job N	io. <u>19943</u>	7007
D. Purinyton	Locat	ion Early	City Mo
M. Swasson	Well	No. <u>Mω</u> -	104
	Date	Apr. 1	17 1990
Total Well Depth (from top of casing)	•	19.9	feet
Depth to Water Surface (from top of cas	ing)	12.27	feet
Height of Water Column		7.63	feet
Value of Mater Column (height v 0 162)		124	anllona

Well Volumes Purged	Specific Conductance	Temperature	рН
Units	Micronhos	0F	standard units
1	1245	606	6.89
2	1202	587	7.00
3	1203	56 3	7.03
4	1205	57-1	7.06
5	1222	57.0	6.95
6			·
7			
8			

Field Personnel

Deck

Location (and Cit, Mo)

Total Well Depth (from top of casing)

Depth to Water Surface (from top of casing)

Model No. 19943-002

Location (and Cit, Mo)

Well No. 105

Date 1996

17.3 feet

Depth to Water Surface (from top of casing)

7.3 feet

Height of Water Column

7.05 feet

Well Volumes Purged	Specific Conductance	Temperature	рН
Units	nicronhos	0F	standard units
1	885	56 7	6.74
2	1397	56-0	6.76
3	1304	56.5	6.83
4	1276	56.4	6.78
5	1207	55.7	6.82
6	1212	56.0	6.84
7	1228	55-7	6.80
8			

Volume of Water Column (height x 0.163)

Field Personnel	Job N	io. <u>199</u>	43-002
D. Purrton	Locat	ion East	4 City M
J. Pock	Well	No. Mu	1.106
	Date	April	16, 1990
Total Well Depth (from	top of casing)	17.3	feet
Depth to Water Surface	(from top of casing)	9.5	8 feet
Height of Water Column		7.7	2 feet
Volume of Water Column	(height x 0.163)	1.25	gallons

Well Volumes Purged	Specific Conductance	Temperature	Нф
Units	Micromhas	oF	standard units
1	1153	524	6.67
2	1186	52.1	6.60
3	1222	52.2	6.60
4	1237	52.2	6.62
5	1225	52.2	6.61
6			
7			
8			

Field Personnel	Job 1	No. <u>1994.</u>	3-002
D. Purinten J. Peck	Locat	tion Earl	C.1, MO
J. Pect	Well	No. Mw	-107
	Date	Apr. 1 16	1990
Total Well Depth (from top of casing)		17-3	feet
Depth to Water Surface (from top of cas	ing)	<u>5.22</u>	feet
Height of Water Column		12.08	feet
Volume of Water Column (height x 0.163)	e	1.97	gallons

, <u></u>			
Well Volumes Purged	Specific Conductance	Temperature	Нф
Units	Miccomhos	°F	standard units
1	1006	53.3	7.14
2	989	51.3	7-0
3	987	50.9	6.96
4	975	50 8	6.93
5			
6			
7			
8			

MEMORANDUM

Date:

October 2, 1980

To:

Bob Schreiber

From:

Burt McCullough

Subject:

Westlake Landfill

Muft 7 m With loke 2:00

1980

SCLID WASTE

Westlake Landfill, located in Bridgeton Missouri (St. Louis County) has been the subject of recent inquiry. This landfill began operation prior to state regulation. As far as our records show, this landfill first opened in the mid-1960's. Part of the landfill lies in an old quarry and part of the landfill lies in the Missouri River floodplain, approximately 1^{l_2} miles from the river. Witnesses to this operation, when the area of the landfill which lies in the floodplain was in operation, note that the fill area was often actually beneath the level of the water table. According to file materials from Missouri Geological Survey, it is "highly probable that leachate from the landfill is entering the waters of the Missouri River. . . " Leachate from the old quarry area of the landfill is collected and hauled to MSD treatment plants. Construction of onsite treatment facilities is underway. About 48,000 gallons of leachate per day is currently being collected.

Aside from normal landfill materials, there are chemical industrial wastes and radiologically contaminated materials deposited in this landfill. The chemical wastes, that we know of, include about 4,000 tons of residues from the production of insecticides and herbicides. These pesticide wastes were deposited by Chevron Chemical Company. Also included in the chemical wastes are waste materials from ink manufacture and from the manufacture of glue. Among the chemical wastes that we know of in Westlake Landfill are:

waste ink

pigments

oily sludges

esters

alcohols

insecticides

halogenated intermediates

aromatics

oils

wastewater sludges

heavy metals

asbestos

herbidices

Besides chemical hazardous wastes, in Westlake Landfill, there are radioactive wastes. During early 1973 Cotter Corporation buried radioactive Barium Sulfate Slag material and radiologically contaminated building rubble. There are approximately 9,000 tons of this material which contain about 7,000 tons of natural Uranium. In October, 1977, an aerial radiological survey was done to determine the location of the burial of this contaminated material. The report from this survey indicates that there are two burial sites. One is in the center of the old quarry area, and the other is on the edge of the floodplain area which borders adjacent farmland. The U.S Nuclear Regulatory Commission has contracted Radiation Management Corporation to do extensive on-site radiological surveys which include groundwater analysis, core sampling, test boring, and other tests as deemed necessary. The NRC has given DNR verbal

Joseph P. Teasdale Governor Fred A. Laiser Director

Division of Environmental Quality Robert J. Schreiber Jr., P.E. Director

Exhibit 19-B

RESOURCES 65102 (314)751-3241

MISSOURI DEPARTMENT OF NATURAL P.O. Box 1368 2010 Missouri Bivd. Jefferson City, Missouri

Westlake Landfill continued Page 2 October 2, 1980 To: Bob Schreiber

permission to utilize the monitoring wells which Radiation Management Corporation will be digging, in order that DNR may test for the presence of chemical hazardous wastes.

There is little known about what went into Westlake Landfill prior to State regulation. Analysis needs to be done to determine: 1) what wastes are deposited in Westlake Landfill, 2) if any of these pollutants are leaving the landfill via groundwater, and 3) what threat does Westlake Landfill pose to drinking water supplies.

cc: Fred Lafser
Ron Kucera
Jim Long
Robert Robinson
Bob Miller
Tom Doan

ricon

3.600 St. Louis County
West Lake Demolition Landfill

October 31, 1977

RECEIVED NOV 2 1977

Bureau of Bolid Waste Management

Mr. William Canney West Lake Landfill, Inc. Rt. 1, Box 206 Bridgeton, MO 63044

Dear Mr. Cenney:

This is to follow up on the inspection of the West Lake Demolition Landfill on October 4, 1977, by a representative of the Missouri Department of University Posources. As a require of this inspection, the following unsatisfactory features are noted and recommendations for their correction are given.

UNSATISFACTORY PEATUPES:

- 1. Non-demolition landfill waste including wastes not even acceptable at sanitary landfills were being deposited at the demolition landfill site.
- 2. Routine techniques of spreading and compacting the demolitions wastes were not being practiced.

COMMENTS AND RECOMMENDATIONS:

1. A considerable arount of paint sludge in 55 vallon metal drums had been disposed of on the site. It appeared that the majority of the paint sludge had been mixed with soil and had caused one area to be very odorous and extremely damp. Neither the demolition or sanitary landfill should be accepting any quantity of paint or other sludges. It is understood that a small amount might get into the landfill undetected but, it was obvious that a good nortion of the sludge could and should have been turned away. Immediate steps must be taken to stop all incoming deposite of such materials and to immediately remove such materials when they some how are dumped. (Section 89-4.910 (2) (A) of the Missouri Solid Waste Rules and Regulations lists the types of materials to be accepted at a demolition landfill. Enclosed is one copy of the Rules and Regulations.

3.600 St. Louis County
West Lake Demolition Landfill

October 20, 1977

- 2. Acceptance of non-demotion wastes has been observed in the past at the demolition landfill site. It is felt that it is a combination of an inadequate sign listing the wastes to be accepted, inadequate inspection of loads coming in and a willingness to accept such non-demolition materials when they are on site. Section 10-4.010 (2) (C) 2 requires that a list of wastes to be accepted to displayed prominently at all site entrances. No sign was observed at either entrance for the demolition landfill. A sign lighting the waste to be accepted must be erected at all entrances to the demolition landfill. A responsible supervisor should be located on site who is willing to thoroughly inspect every load that comes in and to reject all non-demolition materials. Anyone caught dumping non-demolition wastes should be forced to remove such wastes to a proper disposal facility. The combination of advising prospective dumpers of what wastes are accepted via the landfill sign along with a responsible supervisor who is knowledgable about what wastes can and cannot be accepted should result in a great reduction in non-demolition wastes being dumped at the demolition landfill.
- 3. It was observed that the demolition materials were being dumped at the top of the working face of the landfill and for the most part simply pushed over the edge of the face. Very little compaction was being accomplished. It was understood that some bulky wastes such as large concrete blocks and tree trunks cannot be compacted but, the majority of the other demolition wastes can be spread and compacted in layers around two feet thick on or near a 3 to 1 slope. If possible, it is recommended that the demolition wastes be dumped at the base of working face. Whether the waster are dumped at the top or base of the working face, every effort must be made to spread and compact the demolition wastes in layers not to exceed two (2) feet as much as practical from the standpoint of the size and shape of the materials. If a load is observed containing large materials that could hinder the proper compaction of other demolition wastes. it should be dumped where it can be more easily handled instead of with the other wastes. Section 80-4.010 (12) (C) I requires that solid waste handling equipment shall be capable of :
 - 1. Spreading and compacting the solid wastes accepted in layers no more than two feet thick, when practical from size and shape of the waste material, while confining it to the smallest practical area.
 - 2. Compact the solid waste to the smallest practical volume.
 - 3. Place, spread and compact the cover material as much as practical.
- 4. An extensive salvage operation was being run at the demolition

3.600 St. Louis County West Lake Demolition Landfill Page Three

October 31, 1977

CONTRACTOR OF STREET

I landfill mainly for the collection of metallic objects. It was understood that the salvaged materials are hopefully removed from the site the same day they are collected. The ' landfill must be commended for the extensive salvage operation but, every effort must be made to remove the salvaged _ material daily or to keep them mently stored on site.

cover material had been applied and had been properly compacted any areas that have been brought up to final grade should contain final cover consisting of at least two feet of compacted soil and be properly seeded.

If you have any questions concerning the above comments and recommendations, please feel free to give us a call at our St. Louis Office. Reinspections will be made to insure that any non-demolition materials are not being accepted and the materials accepted are being properly compacted. of the land

APPROVED: - SUBMITTED BY: M. Ober Types : Earl F. Moltgraeve, P.E. Bud Stein . Regional Administrator

St. Louis REgional Office

St. Louis Regional Office

Department of Natural Resource

Department of Natural Resources Wemblach Regional Administrator Chert et ar es la EFH/BS/15 - -- CC: Earl Breadon 2337 Telegraph Road Louis, MO St. Louis County Health Department ____ CO,SW

কৈ এর ১ জেপাছের সভাবাদে করে। ু

For the time to the common them are a fine for the company of

The Period of the State of

MISSOURI DEPARTMENT OF NATURAL RESOURCES DIVISION OF ENVIRONMENTAL QUALITY

DEMOLITION LANDFILL SURVEILLANCE RECORD

e of Demolition Landfill: West Landfill:	ke la	nettill			ition Lou
nit No: 2/8703	Cour	ity:S	<u> </u>	Couis (ounty
er: West Lake Inc.	Oper	ator:	Vine	as ow	ner
ess: Route 1, Box 206 Bridgeton, Mo 63	Addr	ess:			
0				•	· · · · · · · · · · · · · · · · · · ·
Special Conditions and Approved Modification	ons				•
A. Are there any special conditions or approve the rules and regulations? (e.g. impermeat quirements) B. Is the demolition landfill operation in com	ble barrier, Yes	limited exc	avation,	exceptions to	weekly cover re-
(If "No," describe violations under "REM	ARKS.") Yes	i -	No		
Check Types of Waste Accepted					
oneck Types of Waste Accepted		INDICATE!		REPORTED BY	AS ORSERVED
	L	INDICATED		REPORTED BY OPERATOR	AS OBSERVED
Demolition and construction waste	[,			AS OBSERVED
Demolition and construction waste	[,			AS OBSERVED
Demolition and construction waste		,			AS OBSERVED
Demolition and construction waste		,			AS OBSERVED
Demolition and construction waste		,			AS OBSERVED
Demolition and construction waste		,			AS OBSERVED
Demolition and construction waste		,			AS OBSERVED

IV. Satisfactory Compliance Subsections Regulations 80-4.010

Check all sul tions: SAT — Satisfactory; UNS — Unsatisfactory. (If necessal escribe "UNS" violations", under "Remarks.")

ION ABER	SATISFACTORY COMPLIANCE OPERATING PROCEDURE	SAT	UNS
ID W	ASTE ACCEPTED		
	Routine sanitary landfill techniques of spreading and compacting solid waste shall be used as much as practicable to dispose of solid waste in a demolition landfill.		X
	A list of wastes to be accepted shall be displayed prominently at- the site entrance.		X
SOLID W	ASTE EXCLUDED		
	A responsible supervisor shall be present at the disposal area at all times when the area is open to receive waste.	X	
	Excluded wastes deposited removed to an approved disposal site.		X
ALE ZELL	CTION		
	Site accessible by all-weather roads.	X	
ER Q	UALITY		
1	Surface water courses and runoff satisfactorily diverted from the fandfill. Demolition landfill construction and grading to promote rapid surface water runoff without excessive erosion.	X	
	Decomposable solid wastes deposited above predicted maximum water table.	X	
SUAL	ITY		
	No open burning without written permission from the agency having jurisdiction.	X	
AS_CONT	ROL		
	Decomposition gases adequately vented to prevent danger to occu- pants of adjacent property.	X	
	Gases vented to prohibit explosive or toxic accumulations.	X	
ORS			
	Vector control programs implemented when necessary.	V	
STHETI			
	Litter collected and compacted into cell be utilized daily.	V	
	Wastes easily moved by wind covered as necessary.		
3	On-site vegetation and natural windbreaks being utilized for litter control and aesthetic appearance.	Z	
		ايحمي	

SUBSECTION NUMBER	SATISFACTORY COMPLIANCE OPERATING PROCEDURE	SAT	U
(10) MESTHETI	CS (continued)	<u> </u>	
(10)(C)4	Salvaged materials removed daily or stored of aesthetically acceptable manner.	X	
(11) COVER M		4	_
(11)(¢)1	Twelve (12) inches compacted soil cover material applied at least once every seven calendar days.	X	
(11)(C)2	Final cover of at least two (2) feet compacted soil applied on all- completed areas.	X	
(12) COMPACT	ION		_
(12)(C)1A	Solid waste spread in layers not to exceed two (2) feet as much as practical.		5
(12)(C)1B	Solid waste compacted to smallest practical volume.		
(12)(C)1C	Cover material compacted as much as practical.	X	
(12)(C)2	Equipment available and operated to spread and compact the solid waste as received or at least when the accumulated waste reaches 200 cubic yards.		7
(12)(C)3	No solid waste disposed of in water where the water interfered with spreading and compacting or where the water is causing a mos- quito problem.	X	
(13) SAFETY			_
(13)(C)1	Fire extinguishers provided on all equipment		V
(13)(C)2	Provisions for extinguishing fires in waste, equipment or structures.		
(13)(C)3	Scavenging prohibited.	X	
(13)(C)4	Controlled access limited to operating hours.	X	
(13)(C)5	Traffic control signs provided.	V	
(13)(C)6 .	Dust control adequate.	V	
(14) RECORDS			
(14)(C)1A	Records of complaints and major problems.		
(14)(C)1B	Records of dates of cover material application.		
(14)(C)1C	Records of vector control efforts.		
(14)(C)1D	Records of dust and litter control efforts.		_
(14)(C)1E	Records of quantity of waste received.		
(14)(C)2	Records of location of general types of wastes and depth of fill.		

SIGNATURE OF INVESTIGATOR

REMARKS Point Stickers their surposes in vicinity of laintelien clarifility denience at top pushing over edge cliff method their for contraction; they need chetter sign and that contract of materials coming in estimate allowed materials harded did (Attach addisonal sheets as necessary.)

V. Operation Proceeding in Accordance With Approved Engineer Plans? (If "No," describe violations under

BY

TABLE I - Results of Analysis of Leachate From Westlake Landfill, Incorporated (1/23/78)

	PARAMETER	1 4	CONCENTRATION
1.	pH (Std. Units)		6.0
2.	Specific Conductance (µmhos/cm)		3170
3.	Alkalinity as CaCO3 (mg/l)	•	475
4.	Acidity as CaCO ₃ (mg/l)		415
5.	Total Solids (mg/l)		4030
6.	Suspended Solids (mg/l)	1	392
7.	Volatile Suspended Solids (mg/l)		223
8.	Grease (mg/1)	•	56
9.	Chemical Oxygen Demand (mg/l)		3820
10.	Total Organic Carbon (mg/l)	:	1090
11.	Phenol (mg/l)		1.02
12.	Fluoride (mg/l)	:	0.5
13.	Chloride (mg/l)		330
14.	Cyanide (mg/l)	; ;	. <0.1
15.	Kjeldahl Nitrogen as N (mg/l)	† · · ·	83.2
16.	Sulfate (mg/l)		580
17.	Sulfide (mg/l)		<0.1
18.	Surfactant (MBAS) (mg/l)		0.5
19.	Chromium (mg/l)		<0.5
20.	Copper (mg/l)	* * * * * * * * * * * * * * * * * * *	1.60
21.	Iron (mg/l))	31.0
22.	Lead (mg/l)		<0.5
23.	Nickel (mg/l)		<0.3
24.	Zinc (mg/l)		10.8

Confirmed Abandoned or Uncontrolled Hazardous Waste Disposal Sites in Missouri

January 1, 1987

Annual Report

MISSOURI
DEPARTMENT OF NATURAL RESOURCES
Division of Environmental Quality

WESTLAKE LANDFILL

Classification: Class II, Priority 2

Site Name: Westlake Landfill

Address: Bridgeton, MO 63042. Between Old Rock Hill Road and New

Rock Hill Road east of Earth City T 46 N, R 5 E, St. Charles Quadrangle

Waste Type: Organics, inorganics, solvents, pesticides, heavy metals,

acids, bases, plating wastes and radionuclides

Quantity: Unknown

Site Description:

The site is an active landfill on the Missouri River floodplain in St. Louis County. The site has been reduced to two areas (see attached legal description).

Present Owner: William McCullough, President, Westlake Landfill, Inc.,

Bridgeton, MO 63042

Environmental Problems Related to Site:

The site is an active permitted landfill which in the past accepted unknown quantities of hazardous wastes. Excavation at the site in the past reached the same depth as the groundwater. Unknown quantities of hazardous materials have been deposited in direct contact with groundwater. There is potential for contamination of groundwater and the Missouri River which is less than one mile away, directly west of the site.

Remedial Actions at Site:

The site was surveyed prior to expansion in order to separate the demolition fill area from the area identified as containing hazardous materials.

Area of Concern Related to Site:

The average natural ground elevation is 435 to 440 feet with groundwater at a shallow depth. The alluvium underlying the river is one of the most important aquifers in the state. Consequently, if contamination is occurring from the landfill, it is threatening a vital aquifer resource.

General Geologic and Hydrologic Setting:

LOCATION: Longitude 90 26' 45"; latitude 38 46' 15", St. Charles Quadrangle.

The landfill has been in existance for more than twenty years. For most of that time period, landfilling has occurred on the Missouri River floodplain. Landfilling also has taken place in a limestone quarry

adjoining the floodplain landfill. The quarry is in the St. Louis Limestone which is present along the eastern slopes of the Missouri River floodplain.

The early portion of the landfill operation included excavation and filling below the floodplain and into the groundwater of the Missouri River aquifer. Subsequent landfill operations generally were confined to filling above the floodplain surface and also in the adjoining limestone quarry. Except where operational procedures cause outbreaks of leachate to occur in the quarry or runoff water to drain into the quarry, there was no evidence of significant amounts of groundwater from the alluvial aquifer entering the limestone. For the most part, the recharge, quite limited to begin with, would be from the bedrock adjoining the alluvium into the Missouri River aquifer rather than the aquifer recharging the surrounding bedrock.

Groundwater monitoring indicates contaminant movement into the alluvial aquifer in a generally northwesterly direction. However, such monitoring to date is inadequate to verify this indication or to adequately characterize the nature of the alluvial aquifer in the vicinity of the landfill.

The Missouri River floodplain sediments consist of 15 to 20 feet of silt loam to very silty clay having moderate to high permeability. The groundwater table occurs at depths of 15 to 20 feet below floodplain level. Fluctuations of 5 to 15 feet occur during periods of high water levels when there are prolonged wet seasons that affect the Missouri River. Local wet or dry periods cause little effect other than recharge directly through the landfill. This may be the most significant risk posed by the Westlake Landfill, the poor soil covering procedures that apparently occurred during landfill operation.

Beneath the silt loam, very silty clay surface soil of the alluvium, the Missouri River alluvial sediments are characterized by a general increase in grain size associated with increasing depth. The sand increase becomes noticeable at depths of 20 to 30 feet with the percentage of gravel beginning to occur at depths of 30 to 40 feet. These coarse sediments, plus the large and perennial recharge of the river, cause the alluvium to be one of the major and most important aquifers in the state. Consequently, if contamination is occurring from the landfill, it is threatening a vital aquifer resource.

Public Drinking Water Advisory:

There are no public water systems located in the immediate vicinity of Westlake Landfill. However, the site is less than one mile from the Missouri River, which is the water source for St. Louis County Water Company's North Plant. The intake for that plant is about eight miles downstream from Westlake Landfill. Should contamination from the site reach the Missouri River, the downstream public water system could be affected.

Private wells located near the landfill may also be susceptible to contamination.

Health Assessment:

The Westlake Landfill site has been found to be contaminated with 4000 tons of chlordane, trichloroethylene and toluene, and 7000 tons of low level uranium ore wastes.

Chlordane is a broad spectrum insecticide that has been observed to cause the following symptoms: blurred vision, confusion, ataxia, delirium, coughing, abdominal pain, nausea, vomiting, diarrhea, irritability, tremors, convulsions, anuria, and cancer in laboratory animals. It attacks the central nervous system, eyes, lungs, liver, kidneys, and skin. TCE or trichloroethylene is an animal carcinogen and is also capable of causing the following symptoms: irritation of the eyes, nose and throat; dermatitis; headache, dizziness, vertigo, tremors, nausea and vomiting, irregular heartbeat, sleepiness, fatigue, blurred vision, unconsciousness, and death. Damage occurs to the respiratory system, heart, liver, kidneys, and central nervous system. Toluene has been observed to cause irritation of the eyes, respiratory tract, and skin; dermatitis, headache, dizziness, fatigue, muscular weakness, drowsiness, lack of coordination, staggering gait, skin paresthesia, collapse and coma.

Uranium is reported to cause adverse health effects in two ways: toxic chemical effects including damage to the kidney and liver, pneumoconiosis, pronounced changes in the blood and generalized injury; and radiation effects including lung cancer, osteosarcoma, and lymphoma.

Analysis of the rates of fetal death, low birth weight, and malformations for 1972-1982 showed no rate for the area significantly higher than the state average.

A well survey and water sampling has been completed, and an exposure questionnaire is presently being administered to selected residents near the site. This investigation by the Missouri Department of Health has found there are only four wells still in use in the area that are downgradient from the site. One is used only occasionally and one is not used for potable water at all. None of the wells sampled had detectable amounts of any of the chemicals disposed of at the site. None of the residents questioned so far appeared to have any adverse health effects caused by materials disposed of at the site.

Based on available information, a health threat exists due to the toxic effects of chemicals and low level uranium wastes buried at the site, and the possibility that off-site migration of these materials might occur. While there is no evidence of past or present exposure, the potential for future exposure exists based on the possibility that off-site migration might occur. Sampling and corrective containment and diversion should continue at this site until risk to the public health can more accurately be determined.

Confirmed Abandoned or Uncontrolled Hazardous Waste Disposal Sites in Missouri

Fiscal Year 1987 Annual Report

MISSOURI
DEPARTMENT OF NATURAL RESOURCES
Division of Environmental Quality

WESTLAKE LANDFILL

Classification: Class III, Priority 14

Site Name: Westlake Landfill

Address: Bridgeton, MO 63042. Between Old Rock Hill Road and New

Rock Hill Road east of Earth City, St. Louis County

T 46 N, R 5 E, St. Charles Quadrangle

Waste Type: radionuclides

Quantity: 7000 tons of low level uranium ore wastes

Site Description:

The site is part of an active landfill on the Missouri River floodplain in St. Louis County.

Present Owner: Westlake Landfill, Inc.,

Bridgeton, MO 63042

Environmental Problems Related to Site:

The site is an active permitted landfill which in the past accepted 7000 tons of low level uranium ore wastes. Excavation at the site in the past reached the same depth as the groundwater. There is potential for contamination of groundwater and the Missouri River which is less than one mile away, directly west of the site.

Remedial Actions at Site:

The site was surveyed prior to expansion in order to separate the demolition fill area from the area identified as containing hazardous materials.

The Missouri Department of Natural Resources is the lead agency for this site.

Area of Concern Related to Site:

The average natural ground elevation is 435 to 440 feet with groundwater at a shallow depth. The alluvium underlying the river is one of the most important aquifers in the state. Consequently, if contamination is occuring from the landfill, it is threatening a vital aquifer resource.

General Geologic and Hydrologic Setting:

LOCATION: Longitude 90 26' 45"; latitude 38 46' 15", St. Charles Quadrangle.

The landfill has been in existence for more than twenty years. For most of that time period, landfilling has occurred on the Missouri River floodplain. Landfilling also has taken place in a limestone quarry adjoining the floodplain landfill. The quarry is in the St. Louis Limestone which is present along the eastern slopes of the Missouri River floodplain.

The early portion of the landfill operation included excavation and filling below the floodplain and into the groundwater of the Missouri River aquifer. Subsequent landfill operations generally were confined to filling above the floodplain surface and also in the adjoining limestone quarry. Except where operational procedures cause outbreaks of leachate to occur in the quarry or runoff water to drain into the quarry, there was no evidence of significant amounts of groundwater from the alluvial aquifer entering the limestone. For the most part, the recharge, quite limited to begin with, would be from the bedrock adjoining the alluvium into the Missouri River aquifer rather than the aquifer recharging the surrounding bedrock. Near the bedrock quarry pit, however, the potential exists for draining some alluvial water into this sump. Apparently, the pit is dewatered on a continuous basis with the water pumped to discharge in the alluvial setting. Groundwater monitoring indicates general movement of the alluvial groundwater to the west and north.

The Missouri River floodplain sediments consist of 15 to 20 feet of silt loam to very silty clay having moderate to high permeability. The groundwater table occurs at depths of 15 to 20 feet below floodplain level. Fluctuations of 5 to 15 feet occur during periods of high water levels when there are prolonged wet seasons that affect the Missouri River. Local wet or dry periods cause little effect other than recharge directly through the landfill. This may be the most significant risk posed by the Westlake Landfill, the poor soil covering procedures that apparently occurred during landfill operation.

Beneath the silt loam, very silty clay surface soil of the alluvium, the Missouri River alluvial sediments are characterized by a general increase in grain size associated with increasing depth. The sand increase becomes noticeable at depths of 20 to 30 feet with the percentage of gravel beginning to occur at depths of 30 to 40 feet. These coarse sediments, plus the large and perennial recharge of the river, cause the alluvium to be one of the major and most important aquifers in the state. Consequently, if contamination is occurring from the landfill, it is threatening a vital aquifer resource.

Public Drinking Water Advisory:

There are no public water systems located in the immediate vicinity of Westlake Landfill. However, the site is less than one mile from the Missouri River, which is the water source for St. Louis County Water Company's North Plant. The intake for that plant is about eight miles downstream from Westlake Landfill. Should contamination from the site reach the Missouri River, the downstream public water system could be affected.

Private wells located near the landfill may also be susceptible to contamination.

Health Assessment:

Uranium is reported to cause adverse health effects in two ways: toxic chemical effects including damage to the kidney and liver, pneumoconiosis, pronounced changes in the blood and generalized injury; and radiation effects including lung cancer, osteosarcoma, and lymphoma.

Analysis of the rates of fetal death, low birth weight, and malformations for 1972-1982 showed no rate for the area significantly higher than the state average.

An exposure assessment including a well survey, water sampling, and an administrative exposure questionnaire was completed for the site. This investigation by the Missouri Department of Health has found there are only four wells still in use in the area that are downgradient from the site. One is used only occasionally and one is not used for potable water at all. None of the residents questioned appeared to have any adverse health effects caused by materials disposed of at the site.

Based on available information, a health threat exists due to the effects of low level uranium wastes buried at the site, and the possibility that off-site migration of these materials might occur. While there is no evidence of past or present exposure, the potential for future exposure exists based on the possibility that off-site migration might occur. Sampling and corrective containment and diversion should continue at this site until risk to the public health can more accurately be determined.

NOV 17 1535

ORIGIN OF MATERIAL AND HISTORY OF LICENSE

1942-1966

BELGIN CONGO AND DOMESTIC URANIUM ORES PROCESSED AT MALLINCKRODT, INCORPORATED, AT DESTREHAN STREET FACILITY ON NORTH SIDE OF ST. LOUIS. AGREEMENT WITH U. S., BELGIANS WANTED ORE RESIDUES (DAUGHTERS) RETURNED. MATERIAL WAS HELD BY U. S., BUT NOT CLAIMED BY BELGIAN CONGO.

JANUARY 10, 1964

AEC-OAK RIDGE OPERATIONS OFFICE PUT OUT BID PACKAGE TO SELL, AS LISTED IN BID PACKAGE, TOTAL ORE RESIDUES OF 117,050 TONS OF RAFFINATE OR BARIUM SULFATE CAKE CONTAINING APPROXIMATELY 191 TONS OF URANIUM. THE 8700 TONS OF BASO₄ (LEACHED) CONTAINING 7 TONS OF URANIUM WAS ITEMIZED AS PART OF THIS PACKAGE.

EARLY 1966

CONTINENTAL MINING AND MILLING COMPANY, CHICAGO, ILLINOIS, LICENSE NO. SMA-862 PURCHASED FROM AEC-ORO. THE ORE RESIDUES WERE STORED AT ST. LOUIS AIRPORT. ORE RESIDUES WERE MOVED TO 9200 LATTY AVENUE, NAZELHOOD, MISSOURI.

DECEPBER 29, 1966

LICENSE NO. SINC-907 WAS ISSUED TO COMMERCIAL DISCOUNT CORPORATION, CHICAGO, ILLINOIS ALLOWING FOR POSSESSION OF RESIDUES, REMOVAL OF MOISTURE, AND SHIPMENT TO COTTER CORPORATION IN CANON CITY, COLORADO.

J' 1RY 1967

CONTINENTAL MINING AND MILLING TERMINATED BUSINESS, COMMERCIAL DISCOUNT CORPORATION OF CHICAGO, ILLINOIS, TOOK PHYSICAL POSSESSION OF THE FACILITIES AND SOURCE MATERIAL STOCKPILE.

DECE! BER	31,	1969
-----------	-----	------

COTTER CORPORATION, CANON CITY, COLORADO, LICENSE NO. SUB-1022 PURCHASED REMAINING SOURCE MATERIAL AT LATTY AVENUE.

AUGUST TO

OCTOBER 1973

COTTER TRANSPORTED FROM THE LATTY AVENUE SITE 10,763,41 TONS OF RESIDUE BY RAIL TO CANON CITY, COLORADO. 48,544,70 TONS OF RESIDUE AND SOIL CONTAINING APPROXIMATELY SEVEN TONS OF NATURAL URANIUM WERE TRANSPORTED TO THE WEST LAKE LANDFILL SITE.

APRIL 10, 23, AND

REGION III INSPECTION AT HAZELWOOD, MISSOURI SITE AND CANON CITY, COLORADO OFFICE.

24, 1974

I'AY 10, 1974

LICENSEE SUBMITS FINAL SURVEY OF LATTY AVENUE SITE TO AEC LICENSING.

NOVEMBER 1, 1974

FINDINGS OF APRIL, 1974 INSPECTION BY REGION III ARE SENT BY LETTER FROM AEC HEADQUARTERS TO COTTER CORPORATION ADVISING THAT DILLUTION AND DISPOSAL OF ORE RESIDUES ARE NOT IN KEEPING WITH INTENT OF PART 20. NO ITEMS OF NONCOMPLIANCE.

NOVEYPER 13, 1974

AEC LICENSING TERMINATED LICENSE NO. SUB-1002.

INSPECTION HISTORY

DATES	LICENSEE	EINDINGS
MAY 16, 17, AND AUGUST 4, 1965	CONTINENTAL MINING & MILLING COMPANY LICENSE NO. SMA-862	5 ITEMS OF NONCOMPLAINCE RE: INADEQUATE POSTING, INADEQUATE SURVEYS & PERMISSIBLE LEVEL OF RADIATION IN UNRESTRICTED AREAS
JANUARY 11, 1967	COMMERCIAL DISCOUNT CORPORATION LICENSE NO. SMC-907	2 ITEMS OF NONCOMPLIANCE RE: PERMISSIBLE LEVELS OF RADIATION IN UNRESTRICTED AREAS AND INADEQUATE POSTING
MARCH 27 AND APRIL 1, 1968	COMMERCIAL DISCOUNT CORPORATION LICENSE NO. SMC-907	2 ITEMS OF NONCOMPLIANCE RE: PERMISSIBLE LEVELS OF RADIATION IN UNRESTRICTED AREAS AND INADEQUATE SURVEYS
NOVETBER 17, 1970	COTTER CORPORATION LICENSE NO. SUB-1022	ONE ITEM OF NONCOMPLIANCE RE: INADEQUATE SURVEYS
APRIL 10, 23, & 24, 1974	COTTER CORPORATION LICENSE NO. SUB-1022	DISPOSAL OF URANIUM BY DILLITION AND BURIAL ARE NOT IN KEEPING WITH INTENT OF AEC REGULATIONS. NOT CITED AS A NONCOMPLIANCE

CONCLUSIONS OF JUNE 22-24, AUGUST 11, 1976 INVESTIGATION

- 1. THE REMAINING ORE RESIDUES AT LATTY AVENUE SITE WERE MIXED WITH SOIL TRANSPORTED TO THE WEST LAKE LANDFILL AS REPORTED BY THE LICENSEE DURING THE APRIL, 1974 INSPECTION. HOWEVER, THE RESIDUE-SOIL MIXTURE IS COVERED BY APPROXIMATELY 3 FEET OF FILL AT WEST LAKE LANDFILL INSTEAD OF 100 FEET AS REPORTED BY THE LICENSEE.
- 2. ENVIRONMENTAL SOIL SAMPLES INDICATE THE PRESENCE OF URANIUM ORE PROCESS RESIDUES REMAINING AT THE LATTY AVENUE SITE. BETA-GAMMA SURVEYS PERFORMED BY RIII PERSONNEL AT THAT SITE ON AUGUST 11, 1976 INDICATE LEVELS OF RADIATION IN CERTAIN AREAS EXCEEDING THE CRITERIA ESTABLISHED BY THE NRC FOR DECONTAMINATION OF LAND AREAS PRIOR TO RELEASE FOR UNRESTRICTED USE.
- 3. BASED ON RADIATION MEASUREMENTS OF THE MATERIAL PRESENT AT THE WEST LAKE LANDFILL AND THE LATTY AVENUE SITE NEITHER LOCATION PRESENTS AN IMMEDIATE RADIOLOGICAL HEALTH HAZARD TO THE PUBLIC.

RECOMMENDATIONS

A MORE DETAILED ENVIRONMENTAL EVALUATION OF THE LATTY AVENUE AND THE WEST -- LAKE LAND FILL SITES SHOULD BE PERFORMED.

OAK RIDGE NATIONAL LABORATORY TO PERFORM THIS EVALUATION. ANY RECOMMENDATIONS WILL BE BASED ON THE OAK RIDGE EVALUATION.

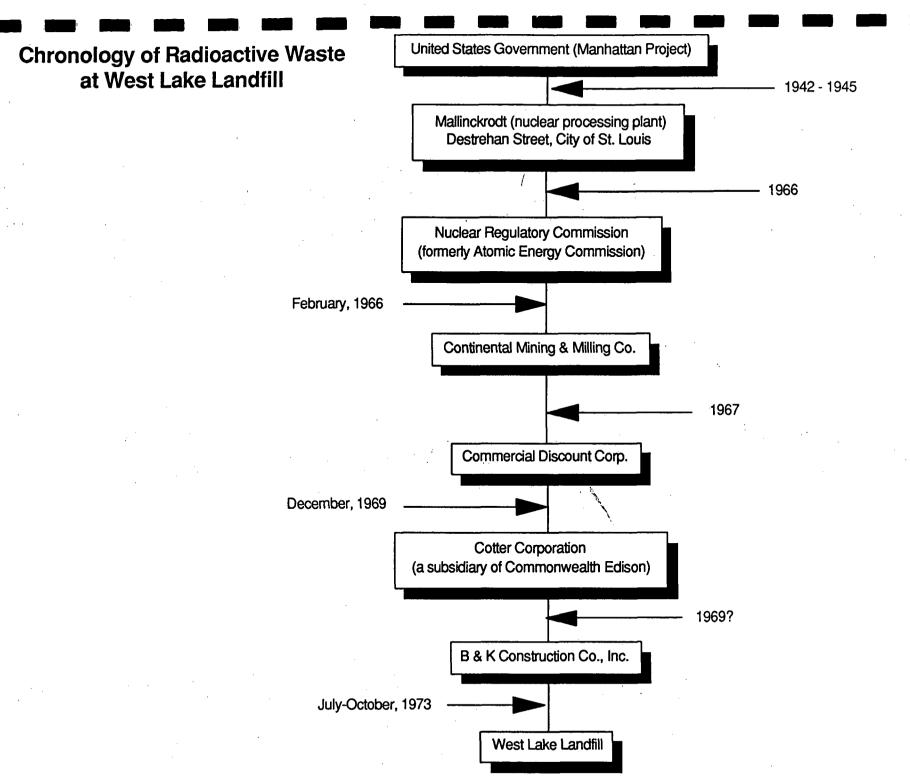


Exhibit ZZ-B